
Semantic Controllable Image Generation in Few-shot Settings

Jianjin Xu

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science
under the Executive Committee

of the Fu Found School of Engineering and Applied Science

COLUMBIA UNIVERSITY

2021

© 2021

Jianjin Xu

All Rights Reserved

Abstract

Semantic Controllable Image Generation in Few-shot Settings

Jianjin Xu

Generative Adversarial Networks (GANs) are able to generate high-quality images, but it

remains difficult to explicitly specify the semantics of synthesized images. In this work, we aim

to better understand the semantic representation of GANs, and thereby enable semantic control in

GAN’s generation process. Interestingly, we find that a well-trained GAN encodes image

semantics in its internal feature maps in a surprisingly simple way: a linear transformation of

feature maps suffices to extract the generated image semantics.

To verify this simplicity, we conduct extensive experiments on various GANs and datasets;

and thanks to this simplicity, we are able to learn a semantic segmentation model for a trained

GAN from a small number (e.g., 8) of labeled images. Last but not least, leveraging our findings,

we propose two few-shot image editing approaches, namely Semantic-Conditional Sampling and

Semantic Image Editing. Given an unsupervised GAN and as few as eight semantic annotations,

the user is able to generate diverse images subject to a user-provided semantic layout, and control

the synthesized image semantics.

Table of Contents

Acknowledgments . v

Dedication . v

Chapter 1: Background and Introduction . 1

1.1 Introduction . 1

1.2 Related Works . 3

1.2.1 Generative Adversarial Networks . 3

1.2.2 Interpreting GANs . 5

1.2.3 Controlling GANs . 5

1.3 Thesis Structure . 6

Chapter 2: Decode GAN’s encoding of semantics . 7

2.1 Linear Semantic Extractor . 7

2.1.1 Training with full supervision . 8

2.1.2 Training in few-shot settings . 9

2.1.3 Geometric Interpretation . 10

2.2 Nonlinear Semantic Extraction . 12

2.3 Summary . 13

i

Chapter 3: Experiment . 15

3.1 Experiment Setup . 15

3.2 Results . 17

3.2.1 Evaluation of LSE . 17

3.2.2 Geometry Interpretation . 19

3.3 Summary and Remarks . 22

Chapter 4: Applications . 24

4.1 Few-shot Semantic Image Editing . 24

4.2 Few-shot Semantic Conditional Sampling . 28

Conclusion . 34

References . 39

Appendix A: Appendix . 40

A.1 Proof of commutative property . 40

A.2 Definition of IoU . 40

A.3 Detailed experiment setup . 41

A.4 Supplementary results . 41

ii

Acknowledgements

My first thanks go to my advisor Changxi Zheng. Changxi has always influenced my

research style with his rigor, devotion, and persistence in science. The most important thing I

learned from him is to be responsible for my research, and only do research that makes me feel

pride.

I appreciate Shuran Song and Carl Vondrick for serving on my thesis committee. Shuran

has always encouraged me to do research, and her kindness helped me a lot throughout my

research. Attending her course was also a great pleasure. Carl has long inspired me through his

contributions to Computer Vision and novel ideas on self-supervision. It is my honor to have him

on my committee.

Many great minds led me into and through the journey of AI research. Feng Chen led me

into the world of computer vision. He was not only my research mentor but also a life instructor

when I was a freshman. Xiaolin Hu supervised me for a long time and taught me valuable

research principles. I am honored to work with him on many projects and look forward to

working with him in the future. In the 2018 summer, I became an intern in MSRA and worked

with Xun Guo and Yan Lv. Their incisive insights and systematical way of research helped me a

lot to form a more mature research style.

Many colleagues are crucial in my research experience. Among them, members from

Tsinghua-Microsoft Future Internet and Technology club are special to me. Weiran He, the club

chairman in 2016, guided me into research and provided many opportunities for my personal

growth. Shaoxiong Wang, the club chairman in 2017, taught me not only research skills but also

iii

experience in running a club. Encouraged by Shaoxiong, I started co-managing the FIT club

starting from 2018 and became the chairman in 2019, which turned out to be my valuable

experience. Kun Wu was the co-chair at that time, and he also helped and inspired me greatly.

During my chairman period, I built good friendships with Fan Jin, Yuhao Huo, and Kaichao You.

I also had a pleasant cooperation experience with Yuekai Jia and Mingyang Kou on club projects.

I cannot be more appreciative of their help and inspiration.

I deeply appreciate other senior mentors and colleagues, especially Ceyuan Yang, Zheyang

Xiong, Yunyun Jiang, Lovish Chum, Yujun Shen, Yinghao Xu, Kun Yu, Jiarui Fang, Yanwen Wei,

Shuyao Kong, Xiahui Ben, Ke Sun, Feng Lin, Yulong Wang, Yueqiao Li, Chang Xiao, Peilin

Zhong, Jian Wu, Fangzhou Liao.

I enjoyed spending time with my friends. Thanks to Yixuan Wang, Haoyu Qin, Ke Yang,

Yang Zhao, Qianrui Zhang, Huajun Wu, Fangdan Ye, Chao Yao, Hua Deng, Zongyi Li, Feng Ji,

Tingbo Lv, Changran Hu, Ruoran Shi, Muchen Yuan, Runqi Zhu, Yuchen Mo, Weishu Mo, Yue

Qin, Bohan Qu, Yilun Wang, Junrui Zhu, Xinchun Yang, Yifan Zhang, Pai Liu, Kaiwen Xu,

Zhiwen Fan, Wenting Cai, Feng Ji, Lan An, and Tao Luo, for the games, parties, and

conversations.

Finally, I deeply thank my parents for their unconditional love and support.

iv

Dedication

To Xiaojing

v

Chapter 1: Background and Introduction

1.1 Introduction

Recently, Generative Adversarial Networks (GANs) [1] have achieved tremendous success

in various image synthesis applications, such as high-resolution faces [2], diverse bedroom im-

ages [3], outdoor scenes [4, 5], etc. However, their ability to synthesize images conditioned on

semantic constraints is still limited. Typically, unsupervised GANs [4, 6, 7] cannot sample images

having a certain attributes specified by a user.

Increasing research interests have been directed towards how to control GAN’s image genera-

tion. Researchers propose new architectures that have better controllability [8, 9, 10] and methods

to exploit controllability [11, 12, 13] from pretrained GAN models. The controllability of cate-

gories and attributes has achieved great success, while controlling for an image’s spatial structure

is still challenging. The task of synthesizing image conditioning on spatial information is usually

addressed in the image-to-image context [14, 15, 16, 17]. These methods allow explicit control of

semantic structures but generally need expensive labeled data for training. For example, in order to

synthesize an image from a semantic mask, pix2pix [15] needs a paired image-annotation dataset,

and the cycleGAN [14] also needs a dataset of semantic masks. As the image-semantics relation is

difficult to model, image-to-image methods require expensive semantic labeling datasets to learn.

However, unsupervised GANs are also speculated to have modeled image-semantics well, as

suggested by many works [12, 11, 18, 19]. Are we able to decode the semantics modeled by an

unsupervised GAN and thereby enable its controllability for generated image semantics?

This thesis first study how to decode semantic masks from the feature maps of a generator.

Although GANs are believed to have modeled image semantics, the semantic encoding rule re-

mains unclear. The most related work by far is GAN Dissection [18], which identifies causal units

1

able to manipulate certain semantic concepts in the generated image. However, GAN Dissection

cannot decide the exact category of image pixels. Instead of finding interpretable units, we exam-

ine all the feature maps collectively to build a precise semantic segmentation of a generated image.

Surprisingly, we find that a simple linear transformation, named Linear Semantic Extractor (LSE),

suffices to extract the image semantics.

To verify LSE’s competence for decoding semantics, we conduct experiments on various GAN

architectures and datasets. We choose three of the most widely used GAN architectures: Progres-

sively Grown GAN [2] (PGGAN), StyleGAN [3], and StyleGAN2 [7], trained on CelebAHQ [20],

FFHQ [7], or LSUN’s bedroom and church datasets. The performance of LSE is further compared

to nonlinear semantic extraction methods to verify whether LSE suffices to extract the generated

image semantics. We propose two Nonlinear Semantic Extractors (NSE-1 and NSE-2) for com-

parison. The image semantics extracted by the LSE, NSE-1, and NSE-2 are compared to semantic

masks predicted by a pretrained segmentation network (UNet for facial images, and DeepLabV3

for bedroom and church images). The performance of semantic extractors is measured by mean

Intersection-over-Union (mIoU, defined in Section A.2), which is a common metric in semantic

segmentation context. Results show that although NSEs have higher mIoU, the margins are min-

imal: for most GAN models and datasets, LSEs’ relative performance drop relative to NSEs’ is

within 3.5%. We also provide evidence from geometrical perspectives that (i) feature vectors of the

same category are clustered, and (ii) features of different categories are well-separated measured

by cosine similarity. Therefore, it is well-backed that GANs indeed use a linear notion to embed

semantics.

The training of LSE is supervised, where the supervision is provided by off-the-shelf segmen-

tation networks. Interestingly, the simplicity of LSE suggests that the few-shot learning of LSE

might be possible, which we refer to as the few-shot LSE. We find that a LSE trained with as

few as 16 annotations are able to get close to their fully supervised counterpart. For example, in

StyleGAN2-FFHQ, the 16-shot LSE achieves 88.1% performance relative to its fully trained ver-

sion. Not only does the success of few-shot LSEs backs GAN’s linear semantics embedding, but

2

also inspires new approaches for controlling image generation under few-shot settings.

We consider two important image editing applications: (i) Semantic Image Editing (SIE) and

(ii) Semantic-Conditional Sampling (SCS). The former aims to update images based on the user’s

edit on the semantics of a GAN’s output. For instance, generate images where the hair region

is reshaped according to user’s edits. The latter is meant to generate images subject to a user

specification of desired semantic layout. For example, produce images of a bedroom where the

furnitures are laid out according to user’s specification. We demonstrate few-shot SIE and SCS

algorithm both rely only on only a small number of annotated images.

Both SIE and SCS are built with a core idea: to match a target by optimizing generator’s latent

vector. Essentially, both SIE and SCS are formalized as latent vector optimization problems. The

target of SIE is to change an existing latent vector to match a modified semantic mask. SCS’s

target is to find suitable latent vectors that match a given semantic mask. To evaluate SIE and SCS,

we consider baselines for both tasks, which use a pretrained segmentation network instead of a

few-shot LSE. In comparison to the baselines, our approach with 8-shot LSE is able to generate

comparable (and sometimes even better) results.

In summary, our contributions are twofold: (i) Through extensive experiments, we show that

GANs represent the image’s pixel-level semantics in a linear fashion. (ii) We propose an LSE with

few-shot learning, which further enables two image synthesis applications with semantic control,

namely SCS and SIE under few-shot settings.

1.2 Related Works

1.2.1 Generative Adversarial Networks

GAN [1] is composed of a generator network � and a discriminator network �. The generator

maps a randomly sampled noise I to an image, and the discriminator tries to tell whether the image

is real or fake. By playing against each other, the generator learns to generate images that are

indistinguishable from the discriminators. Another variant of GAN [15] use image-like data for

the input of generator, which can translate an image �� in one domain to image �� in another

3

domain. For example., the image translation could be from “spring” to “autumn”, from “horse” to

“zebra”, from “semantic masks” to “real images”, and etc. We refer to these two types of GANs

as Noise-to-image GANs (N-GANs) and Image-to-image GANs (I-GANs), for simplicity.

N-GANs have achieved tremendous success in synthesizing various images, such as faces,

birds, cars, and bedroom scenes [4, 21, 2, 6, 22, 3]. The resolution of generation has been improved

to 1024 × 1024 for faces [2, 7] and 512 × 512 for ImageNet [23] images [24, 25]. Various losses

and training methods are also proposed to improve the generation quality of GANs [26, 27, 28].

Among various N-GAN models, progressively Grown GAN (PGGAN) [2], StyleGAN [3], and its

improved version StyleGAN2 [7] are three of the most widely used architectures. PGGAN shares

a similar architecture as the Deep Convolution GAN (DCGAN) [4] but is trained progressively.

StyleGAN adopts the adaptive instance normalization [29] from neural stylization literature and

improves the generation quality on many tasks. StyleGAN2 is improved upon StyleGAN and is

currently the state-of-the-art GAN model on various datasets. At the time of this work, these three

GAN models are sufficiently representative for most N-GANs. Therefore, we choose to conduce

experiments on them.

I-GANs can also synthesize photo-realistic images. The pix2pix model [15] can transform

images from one domain to another domain given a paired dataset. CycleGAN [14] relaxes the

pairing constraint by introducing the cycle consistency loss. [30] improves the image resolution

and quality for I-GANs. It can also transform semantic masks to 1024 × 1024 HD cityscapes

[31] images. [16, 17] continue to improve the precision of the mapping from semantic masks to

images. However, if we use I-GANs to instantiate semantic-conditional image synthesis, a large

and densely annotated dataset is required. The labeling cost would be prohibitive if users need

semantic controllable image synthesis on a new dataset. Therefore, we choose not to consider

I-GANs in this thesis.

4

1.2.2 Interpreting GANs

This thesis tries to decode the semantics of the generator, which is related to interpreting or

dissecting GANs. Methods on this topic can be grouped into two categories. First, interpreting the

latent space of GANs. [11, 12] found that there are linear boundaries on latent space, separating

positive and negative image samples of attributes. [32, 13, 33] propose unsupervised methods to

find the linear trajectories of attributes in the latent space. Second, interpreting the feature maps

of GANs. GAN Dissection [18] identifies convolution units that have causality with semantics in

the generated images. By manipulating the causal units, the semantics of the corresponding region

can be edited. [34] found semantic clusters by k-means and matrix factorization in the features

of GAN. This thesis studies the relation between generator’s feature maps and generated image’s

semantics. Our differences are two-fold. First, the semantics studied is of high resolution and

accuracy. Second, our aim is few-shot image editing application, which is not touched by existing

methods.

1.2.3 Controlling GANs

Researchers have also explored methods to enable the controllability of N-GANs, and these

methods often have low labeling costs. There are two major approaches for this purpose. First,

training new GANs with architecture designed to enable controllability. Second, exploiting the

controllability which has already been modeled by pretrained N-GANs.

Methods focusing on designing new architectures is mostly concerned with global attributes

controllability. Conditional GAN (cGAN) and its variant [9, 35] are proposed to enable category

controllability for N-GANs. In cGANs, a vector describing category information is concatenated

with the latent vector together to form the input of GAN models. Supervised by class labels,

cGANs learn to sample images of desired categories. InfoGAN [8] further learns the category-level

controllability without manual labeling. StackGAN [10] extends cGAN by using the embedding

of natural language to control the synthesis. An interesting trial refers to [5], which explores using

scene graphs to control scene generation, yet the image quality is limited.

5

Methods focusing on exploiting the controllability of pretrained N-GANs can be further clas-

sified by the types of controllability they enabled. First, the controllability of global attributes.

Many interpretation-based editing methods fall into this category [11, 12, 32, 13, 33]. Abdal et al.

[36] construct Conditional Continuous Normalizing Flow to manipulate images’ attributes. Sec-

ond, the controllability of 3D characteristics. [37, 38] make use of 3D models to control the pose

and lighting of faces. Zhang et al. [39] control the camera pose of synthetic car images. Thirdly,

the controllability of localized editing, which refers to edit a localized region of an image realis-

tically without changing other regions. Zhu et al. [40, 41] use a latent code optimization pipeline

to make the generated image resemble color strokes drawn by users. Though they can adjust the

images locally to some extend, the precision is limited. [34, 42] propose feature map collaging,

which is to substitute features in target feature maps for features selected from source images.

The semantic controllability studied in this thesis differs two-fold. First, previous methods

on Semantic-Conditional Sampling require expensive labeling, while we focus on using only a

few annotations for this task. Second, Semantic Image Editing is concerned with changing the

morphology of objects rather than changing a localized region freely. In practice, the user may

use local editing methods to change the morphology of objects, but the interaction might not be as

straightforward as SIE.

1.3 Thesis Structure

Chapter 1 introduces the background, related work, and the structure of the thesis. In Chapter 2,

we study how to decode GAN’s encoding of semantics. We propose the Linear Semantic Extrac-

tor and describe its training and few-shot learning methods. Two Nonlinear Semantic Extractors

(NSEs) are proposed for comparison. In Chapter 3, we conduct experiments to show that the LSE

suffices to decode GAN’s semantic encoding. We first describe the experiment and evaluation

setup. Secondly, we present the qualitative and quantitative results of LSEs and NSEs. Thirdly,

few-shot LSEs are trained and evaluated. In Chapter 4, we present the few-shot SCS and few-shot

SIE. The details of experiment setup and additional results are placed in the appendix.

6

Chapter 2: Decode GAN’s encoding of semantics

This chapter aims to decode GAN’s internal representation of image semantics in its image

synthesis process. Our finding is surprisingly simple: a linear transformation on the GAN’s

feature maps suffices to reveal its synthetic image semantics. We first construct such a linear trans-

formation (also referred to as the Linear Semantic Extractor, LSE). Then, two Nonlinear Semantic

Extractors (NSEs) are proposed for comparison.

2.1 Linear Semantic Extractor

A well-trained GAN model maps a randomly chosen latent vector to a realistic image. Struc-

turally, a GAN model concatenates a series of network layers. Provided a latent vector, each layer

8 outputs a feature map x8, which is in turn fed into the next layer. We denote the width, height,

and depth of x8 using F8, ℎ8 and 28, respectively (i.e., x8 ∈ R28×F8×ℎ8).

It is unsurprising at all that one can deduce from the feature maps the generated image seman-

tics. After all, feature maps represent the GAN’s internal data flow that results in the final image.

As images can be segmented using pretrained networks, the feature map can also be segmented

with appropriate networks. More interesting is the question of how easily we can learn from fea-

ture maps about the generated image semantics. A straightforward relation between feature maps

and image semantics could inspire new theories and applications.

Consider a GAN model consisting of # layers and producing images with < semantic classes

(such as hair, face, and cloth). We seek the simplest possible relation between its feature maps

and output image semantics — a linear transformation matrix T8 applied to each feature map x8

to predict a semantic map of the layer 8. By accumulating all the maps, we wish to predict a

semantic segmentation S of the GAN’s output image (see Figure 2.1). Formally, S is just a linear

7

…

generator
segmentation

ℒ

"# "$ "%&#

'

(

)

z

…

upsample and concatenate linear transform

feature maps

Figure 2.1: When synthesizing an image � from a latent vector I, the generator builds a series of
feature maps {x8}#−1

8=1 . We decode those feature maps to semantic segmentation (using a linear
transformation, also referred to as the Linear Semantic Extractor (LSE). The LSE is supervised by
a pretrained segmentation model.

transformation of all feature maps, defined as

S =

#−1∑
8=1

u↑
8
(T8 · x8), (2.1)

where T8 ∈ R<×28 converts x8 ∈ R28×F8×ℎ8 into a semantic map T8 · x8 ∈ R<×F8×ℎ8 through a tensor

contraction along the depth axis. The result from each layer is then upsampled (u↑
8
) to the output

image resolution. The summation extends over all internal layers, excluding the very last layer

(layer #), which outputs the final image. The result S ∈ R<×F×ℎ has the same spatial resolution

F × ℎ as the output image. Each pixel S8 9 is a < × 1 vector, indicating the pixel’s unnormalized log

probabilities representing each of the < semantic classes. This method is abbreviated as Linear

Semantic Extractor (LSE).

In the next two sections, we will describe how to learn the parameters of the LSE in fully

supervised settings and few-shot settings, respectively.

2.1.1 Training with full supervision

The training of the LSE requires pixel-level annotation of semantics. As we are concerned

with synthetic images from a GAN model, it is impractical to manually annotate a training dataset

8

formed by images sampled from GANs. Therefore, we use the semantic masks predicted by pre-

trained off-the-shelf segmenters for supervision. In practice, we use UNet [43] for segmenting

faces, and DeepLabV3 [44] with ResNeSt backbone [45] for the segmentation of the bedroom

dataset and the church dataset.

Concretely, provided a well-trained GAN model, we randomly sample its latent space to pro-

duce a set S of synthetic images. When synthesizing every image in S, we also record the model’s

feature maps {x8}#−1
8=1 . These feature maps are linearly transformed using (2.1) to predict a se-

mantic mask of the image, which is then compared with the result from the pretrained semantic

segmentation network to form the standard cross-entropy loss function:

L =
1

F · ℎ
∑

1≤8≤F
1≤ 9≤ℎ

[
−S8 9 [.8 9] + log

(
<∑
:=1

exp
(
S8 9 [:]

))]
(2.2)

where .8 9 is the semantic class of pixel (8, 9) indicated by the supervisor network, and S8 9 [:]

is the corresponding unnormalized log probability of the :-th semantic class predicted by the LSE

(2.1).

Lastly, the linear matrices T8 are optimized by minimizing the expected loss (estimated by tak-

ing the average loss over image batches in S). The details of the training are placed in Section 3.1.

2.1.2 Training in few-shot settings

Generally, few-shot learning makes use of knowledge learned from previous tasks to ease the

learning of the new task. Here, we rely on the semantic knowledge learned by GANs. Assume

that GANs do encode semantics linearly, it is likely that we can train LSE with a few annotations

given its simplicity. The intuitions are two-fold: (i), the linearity makes the whole optimization

process convex, thus the model parameters are easy to learn. (ii), the linear model is not likely to

overfit according to our assumption because the linear form matches the semantic encoding rule.

The assumption will be tested in Chapter 3.

However, the few-shot settings bring up an inherient deficit: the training data points might not

9

cover all the modes of GANs. For example, the eyeglasses category is rare in generated images,

and the few-shot LSE is likely to get no supervision at all for this category. But this is not a real

bottleneck in practice because users can repeatedly sample images until the desired rare category

appears. During this process, the users do not need to annotate more images and thus the labeling

cost is still low.

In a real-world scenario, the supervision of few-shot learning is assumed to be manual anno-

tations. To be specific, consider the following scenario: a user trains a GAN on an unpopular

dataset and wants to control the image semantics of the GAN model. The user manually annotates

a few images and trains a few-shot LSE. In expectation, the few-shot LSE can segment the images

reasonably well and can support SCS and SIE proposed in this work. For simplicity, we choose to

simulate human annotations with pretrained segmentation network.

Let the number of annotations be # , and the total training iterations be " . The steps of training

a few-shot LSE are:

1. Sample # latent vectors and segment their images using the pretrained segmenter.

2. Optimize T8 using the loss function (2.2) on all the latent vectors.

3. Repeat step 2 for " iterations. For StyleGAN and StyleGAN2, new layer noises are sampled

in every iteration.

In order to evaluate few-shot LSEs more rigorously, the above process is repeated five times

for each model to avoid training data’s variance.

2.1.3 Geometric Interpretation

The linear relation (2.1) allows us to draw an intuitive geometric picture of how image seman-

tics are encoded in the generator’s feature maps.

First, notice that T8 applied on x8 can be viewed as a 1 × 1 convolutional filter with stride

1. The filter operation is commutative with the upsample operation u↑
8
(·) (A proof is placed in

10

𝑥! 𝑥" 𝑥#$!

…

…

(a) feature maps X

…𝑢!↑(𝑥!) 𝑢#↑(𝑥#) 𝑢$%!↑ (𝑥$%!)

𝑋!"

(b) upsampled feature maps X

⋅ =
𝑆!"

𝑇# 𝑇$ … 𝑇%&#

𝑋!"

𝑇
(c) dot product S8 9 = T · X8 9

Figure 2.2: Illustration of the linear transformation (2.1).

Section A.1). Thus, we can rewrite the semantic prediction S as

S =

#−1∑
8=1

T8 · u↑8 (x8) = T · X, (2.3)

where T =

[
T1 . . . T#−1

]
is an < × = matrix with = =

∑#−1
8=1 28 being the total layer depth.

X ∈ R=×F×ℎ is a tensor concatenating all upsampled x8 (i.e., u↑
8
(x8) with resolution 28 × F × ℎ)

along the depth axis (see Figure 2.2b).

Now, consider a pixel (8, 9) in the output image. To predict its semantic class, equation (2.3)

shows that we can take the corresponding = × 1 vector X8 9 that stacks the pixel’s features resulted

from all GAN layers, and dot product it with each row of T (see Figure 2.2c): S8 9 = T · X8 9 .

In other words, each row T(:) of T defines a direction representing the semantic class : in the

=-dimensional feature space.

If the linear transformation can classify features with high accuracy, it indicates that the feature

vectors of different semantic categories are linearly separable. Consider the set of all vectors that

are classified into category : , i.e., the class score for : should be larger than scores for other

classes. The set R: is defined as:

R: = {x|T(:)x > T(9)x,∀ 9 ≠ :} (2.4)

where T(:) is the k-th row of the tensor T. This definition shows that the subspace of each

semantic class forms a hyper-cone originating from the origin.

11

A geometric picture is as follows: Consider a unit =-sphere at the origin. The intersection of

a semantic class :’s hyper-cone and the sphere surface encloses a convex area �: . Then, take

the feature values at a pixel and normalize it into a unit vector. If that vector falls into �: , then

this pixel is classified as class : . As a result, the hyper-cones for " classes completely divide

the =-sphere into " convex areas, each representing a semantic category. From this geometric

perspective, we can even infer a pixel’s semantic class without training the linear model (2.1). We

locate a representative center 2: for each convex area �: on the =-sphere surface. For example,

the semantic centers can be estimated by a clustering algorithm (such as :-means clustering). A

pixel is classified as class 8 if its feature vector is closest to 28 (among all semantic centers) on the

=-sphere. In Section 3.2.2, we show that the class centers can segment images reasonably well,

supporting our hyper-cone interpretation.

2.2 Nonlinear Semantic Extraction

𝑥!"#

𝚺

𝑥#
𝑥$ …

𝑆
(a) NSE-1

2x …𝚺 𝚺

𝑥!
𝑥" …

2x

𝑆

𝑥#$!

(b) NSE-2

Figure 2.3: The architecture of NSEs. The thick blue arrow refers to 3 × 3 convolution with stride
1. The rectangle “2x” block refers to the upsample-convolution block, where the circle “2x” refers
to nearest upsampling with factor 2.

If the linear transformation extracts generated image semantics plausibly, a further question is

to what extent the semantics can be better extracted by nonlinear transformations. Generally, the

nonlinear transformations will more accurately extract the semantics because they have a larger

representation capacity than the linear transformations. Nevertheless, the performance loss of

12

the linear method provides further support on whether or not the feature maps in GANs encode

image semantics linearly. If they indeed encode semantics in a linear way, nonlinear models would

perform not significantly better than our linear model.

To explore this question, we propose two nonlinear extraction models. The architectures of

NSEs are shown in Figure 2.3. The first nonlinear semantic extractor (NSE-1) transforms the

feature map of each layer through three convolutional layers with ReLU activations in-between.

It then upsamples each feature maps using the same interpolation u↑
8
(·) as in (2.1). Formally, the

semantics extracted by NSE-1 is calculated as

SNSE-1 =

#−1∑
8=1

u↑
8
(H(x8)) (2.5)

where H is the nonlinear convolution layers. NSE-1 is a direction generalization from LSE. For

each layer, the only difference is that the NSE-1 uses nonlinear convolution layers while the LSE

uses a single linear convolution.

The second model (NSE-2) transforms feature maps into hidden layers and refines them as the

resolution increases. It adopts the widely used “upsample-convolution” block and resembles the

architecture of DCGAN [4].

One may also examine a nonlinear transformation in extreme — for example, one that con-

catenates a generative model to a full-fledged semantic segmentation model (such as UNet [43]).

However, such a model provides no insight into how feature maps encode image semantics. There-

fore, an over-complex model is undesirable for decoding GAN’s encoding of semantics, and we

choose not to consider those extreme models for our purpose.

2.3 Summary

In this chapter, we propose linear and nonlinear semantic extractors to decode GAN’s encoding

of semantics. The LSE uses a linear transformation as specified in (2.1) to transform the feature

maps of the generator into semantic masks. The fully supervised training and few-shot training

13

of LSE are proposed. We also introduce the geometric interpretation of LSE. Two NSEs are also

proposed for comparison.

In the next chapter, we will experiment to prove the sufficiency of LSE for decoding.

14

Chapter 3: Experiment

In this chapter, we provide empirical evidence that LSE suffices to extract the image semantics

of GANs. First, we introduce the experiment setup and evaluation methods. Second, we present

qualitative and quantitative results of LSEs and NSEs. Third, we show evidence from geometric

perspectives to support the linear semantic relation.s

3.1 Experiment Setup

Pretrained models. We make our experiment as generalizable as possible by conducting ex-

periments on various GANs and datasets. We choose Progressively Grown GAN (PGGAN) [2],

StyleGAN [3], and StyleGAN2 [7] trained on the face, bedroom, and church datasets. The face

dataset is CelebAHQ [20] for StyleGAN and FFHQ [3] for StyleGAN2, which is the same as the

official releases. The bedroom dataset and church dataset are subsets in LSUN [46] dataset. All of

the pretrained GAN models are obtained here 1.

The training of semantic extractors relies on supervisions provided by pretrained segmentation

networks. For segmentation on facial images, we train a UNet with 15 classes on CelebAMask-

HQ [47], which has manually labeled segmentations. For the bedroom and church images, we

use the publicly released DeepLabV3 [44] with ResNeSt [45] backbone trained on ADE20K [48]

dataset. The DeepLabV3 model has 150 classes, in which most categories do not exist in the syn-

thetic images. To remove categories that are not present in GAN’s generated images, we perform

a category selection procedure. First, we train and evaluate LSE, NSE-1, and NSE-2 on the full

150 classes. Then, we remove categories that are predicted with mIoU < 10% by all the semantic

extractors. Finally, we train and evaluate the models on the selected categories again in the same

settings. We tried to use frequency-based metrics to select categories, but found that this method
1https://github.com/genforce/genforce

15

did not work well. The selected categories and the category-wise mIoU are shown in the appendix

(Table A.1 and Table A.2).

Training. For fully supervised training, we synthesize 51,200 images using the GAN and record

their feature maps. These images are then semantically segmented by an off-the-shelf segmenter.

The semantic masks and feature maps are then used to train the transformation matrix T8 for every

GAN layer. To be specific, the total matrix T (defined in (2.3)) for StyleGAN2-FFHQ are of size

15 × 5568. For StyleGAN2-Bedroom, T is shaped as 16 × 5376.

T8 are optimized with Adam [49] with V1 = 0.9, V2 = 0.999 and initial learning rate 10−3. The

training takes 50 epochs in total, where each epoch consists of 1,024 samples. The learning rate is

reduced by 10 after 20 epochs. For the first two epochs, the batch size is 1. For the next 16 epochs

(3 to 19), the batch size is set to 4. For epoch 20 to 50, the batch size is 64. The total optimization

iterations are 1024× 2 + 1024
4 × 16 + 1024

64 × 32 = 6, 656. LSE, NSE-1, and NSE-2 are trained in the

same settings.

For the few-shot training of LSEs, we also sample the latent space and segment the images.

The difference is that only a few annotations are made available. We experimented with 1, 4, 8,

16 samples, resulting in one-shot, 4-shot, 8-shot and 16-shot LSEs, respectively. For the one-shot

LSE, the training takes 2000 iterations with batch size 1. For 4, 8, and 16 samples, the training uses

batch sizes 4, 8, and 16 and iteration numbers 2000, 1000, and 500, respectively. For PGGAN,

each batch is exactly the same. For StyleGAN and StyleGAN2, the layer noises are re-sampled for

each batch. The optimizer setting is the same as in full supervision.

Evaluation. Conventionally, semantic segmentation methods are evaluated on real image-segmentation

datasets. However, our semantic extractors cannot take real images as input. One may invert real

images in GAN’s representation, but the inversion is another challenging problem, thus we do not

consider this approach. As a result, the evaluation cannot be conducted on the common anno-

tated dataset. Ideally, we should annotate synthetic images manually, but the cost would then be

prohibitive. Therefore, we choose to use the prediction from the off-the-shelf segmenter as the

16

ground-truth for evaluation.

We sample and segment another 10,000 images for evaluation. Every time GAN generates an

image, we apply the semantic extractor to the generator’s feature maps to predict a semantic mask.

The segmentation is compared with the pretrained segmenter’s prediction to compute the IoU. The

definition of IoU is also placed in the appendix (Section A.2).

As some datasets (e.g., LSUN’s bedroom dataset) may be more difficult to segment than some

others (e.g., the CelebAHQ dataset), we compute relative performance differences between seman-

tic extractors. Concretely, for each GAN model, there are three semantic extractors to be evaluated,

which are LSE, NSE-1, and NSE-2. Denoting their mIoUs with the pretrained segmenter as H8,

and the highest mIoU among the three as H∗, the relative performance difference of each semantic

extractor is defined as H8−H∗
H∗ .

3.2 Results

3.2.1 Evaluation of LSE

Figure 3.1 compares qualitatively semantic segmentation of LSE to other methods. The quan-

titative results in terms of mIoU scores are reported in Table 3.1, from which it is evident that our

simple LSE is comparable to more complex, nonlinear semantic classifiers. The relative perfor-

mance gap between LSE and NSEs (NSE-1 and NSE-2) is within 3.5%. Results on StyleGAN-

Bedroom and StyleGAN-Church have a slightly larger gap (< 8%). We present additional qualita-

tive results and IoU for each category in Section A.4.

Our experiments show that LSE is capable of extracting image semantics from the feature maps

of the GANs. Further, the close performance of LSE to NSEs suggests that a well-trained GAN

encodes the image semantics in its feature maps in a linear way.

The training and evaluation of few-shot LSEs are identical to fully supervised LSEs except for

the number of training samples. We experiment with 1, 4, 8, 16 annotations obtained from the

segmenter. For each few-shot LSE model, the training is repeated five times as the training data

variance might be significant. We also compare the performance of few-shot models relative to the

17

Figure 3.1: Qualitative comparison of LSE, NSE-1 and NSE-2. From top to bottom, every 3 rows
are from GAN models trained on the same dataset (face, bedroom, church images, respectively).
Images are sampled randomly rather than cherry-picked.

18

PGGAN StyleGAN StyleGAN2
Dataset CelebAHQ Bedroom Church CelebAHQ Bedroom Church FFHQ Bedroom Church

LSE 65.5 (-1.6) 33.2 (-3.2) 51.3 (-3.2) 69.1 (-1.9) 39.9 (-7.8) 35.4 (-6.3) 79.7 (-1.7) 53.9 (-3.4) 37.7 (-2.6)
NSE-1 66.5 34.3 53.0 70.5 43.3 37.8 81.0 55.8 38.7
NSE-2 65.9 (-0.9) 30.7 (-10.5) 49.5 (-6.6) 70.1 (-0.5) 38.9 (-10.2) 34.0 (-10.1) 80.2 (-1.1) 52.1 (-6.8) 35.3 (-8.8)

Table 3.1: The mIoU (%) of LSE, NSE-1, and NSE-2 trained with off-the-shelf semantic seg-
mentation models (UNet for CelebAHQ and FFHQ, DeepLabV3 for bedroom and church dataset).
“Bedroom” and “Church” images are subsets of the LSUN [46] dataset. The numbers in brakets
are the performance difference relative to the best model highlighted in bold.

N FFHQ Bedroom Church
1 55.6 (69.8) ± 5.2 21.5 (39.8) ± 3.7 19.7 (52.2) ± 3.4
4 64.8 (81.4) ± 1.0 36.5 (67.8) ± 2.7 24.2 (64.3) ± 1.4
8 68.4 (85.8) ± 2.6 38.6 (71.6) ± 2.4 26.3 (69.7) ± 0.8

16 70.2 (88.1) ± 3.0 42.2 (78.3) ± 1.1 27.7 (73.5) ± 0.8
full 79.7% 53.9% 37.7%

Table 3.2: The evaluation of few-shot LSEs for StyleGAN2. Each model is trained 5 times. Both
the mean and maximum deviation of the 5 repeats are shown. The numbers in parentheses indicate
the ratio of the mean performance over the fully trained model’s performance listed in the last row.

fully supervised models.

Table 3.2 reports the quantitative evaluation results. First, the extreme case, one-shot LSE,

already shows plausible performance, achieving 69.8%, 39.8%, and 52.5% mIoU scores relative

to the fully trained model. The 16-shot LSE further improves the mIoU scores to 88.1%, 78.3%,

and 73.5% relative to the fully trained model.

3.2.2 Geometry Interpretation

As mentioned in Section 2.1.3, the geometric interpretation of (2.1) indicates that features of

a semantic class fall into a convex surface area on an =-sphere. To verify this intuition, we test

two stronger hypothesis in this section: (i) the features of individual pixels can be clustered around

class centers. If the clusters are well formed, we should be able to find a convex hull to identify

individual classes. (ii) the features of different classes are well-separated under cosine similarity.

If the cosine distances between different classes are larger than within the same class, then finding

a hyper-cone separating different classes should be easy.

19

UNet class centerimage UNet class centerimage

Figure 3.2: Forging LSE’s parameter T using the statistical centers of features. Experiment is done
on StyleGAN-CelebAHQ.

Class centers of features. To estimate the class centers, we randomly generate 3000 images

using StyleGAN-CelebAHQ, and obtain their semantic masks using UNet. All per-pixel feature

vectors from the same semantic class are collected and normalized onto the unit =-sphere. The

vectors are then averaged and renormalized on the =-sphere. The resulting vector is then treated

as a class center to determine each pixel’s semantic class. Some segmentation results are shown in

Figure 3.2, suggesting that this approach indeed segments images reasonably. The segmentation

error (e.g., in Figure 3.2) may be attributed to the inaccurate boundaries between classes, as they are

not explicitly trained to separate different semantic classes. Nevertheless, this experiment confirms

our geometric intuition about the feature maps’ linear embedding of semantics.

Cosine similarities between categories. Our purpose is to test whether the distances of features

within a category are closer than those between different cateogories or not.

The core part is to sample features for each category fairly, and compute the cosine distances

between features. For this purpose, we propose a fair sampling algorithm (Algorithm 1) which

repeatedly samples images and record features fairly until enough features are collected. In every

image, if the feature number of a category is larger than a threshold)1, then)1 feature vectors

from that category are chosen randomly without replacement (denoted by 2ℎ>824(0, #)). The

chosen vectors would be accumulated to a category feature pool until the feature number reach

)2. The algorithm would terminate when all the category feature pools have collected)2 features.

The fair sampling algorithm gauruantees that each category feature pool consists of)1 randomly

chosen vectors from)2
)1

randomly sampled images. As the sampling procedure is identical for each

20

Algorithm 1: Fair feature sampling algorithm.
Input: �; %;)1;)2
Output: { 5: }
for : = 1, 2, . . . , " do

5: = ∅
while ∃:, | 5: | <)2 do

I ∼ N(0, �)
�, � = � (I) // � denotes features
(= %(�)
for : = 1, 2, . . . , " do

if | 5: | <)2 and |{? |(? = :}| ≥)1 then
' = 2ℎ>824({? |(? = :},)1)
5: = 5: ∪ {�? |? ∈ '}

category, the sampled features are fair for each category. In practice, we choose)1 = 200 and

)2 = 4000.

Cosine similarities between categories. We further verify our reasoning by computing the statis-

tics of cosine similarities for feature vectors within the same semantic class and across different

classes.

First of all, to ensure the fairness of comparison for each category, we propose a fair sampling

algorithm in Algorithm 1, where the choice (0, #) means to choose # samples without replace-

ment from 0 randomly. The fair sampling algorithm repeatedly samples images and predicts se-

mantic masks using a pretrained segmenter. For each sampled image and each category present in

the image, if the total number of vectors belonging to a category is larger than)1, then)1 vectors

from them are chosen randomly without replacement. The selected vectors are accumulated to a

feature pool. The feature pool stops accumulating for one category once it has collected)2 features

in total. When all the categories have collected)2 features, the algorithm stops. In practice, we

choose)1 = 200 and)2 = 4000. This means that each category’s features are formed by 4000
200 = 20

randomly selected pixels from each image in 200 randomly sampled images. Therefore, for each

category, their features are sampled in an identical way.

Second, we calculate the cosine similarity between categories using the fairly sampled features.

21

Specifically, we first calculate the pairwise cosine similarity between feature vectors of two pools,

resulting in a)2 ×)2 confusion matrix. The two pools can belong to different categories (inter-

class) or the same category (intra-class). The cosine similarity 2>B(�, �) between A and B is

defined as the mean of the entire matrix.

We show results of StyleGAN-CelebAHQ and StyleGAN2-FFHQ in Figure 3.3. Most diagonal

elements of the confusion matrix have higher cosine similarity than other elements in a row. It

is indicated that the features in a category are indeed more similar to one another than features

between different categories.

bg ski
n

no
se

ey
e_g ey

e
bro

w ea
r
mou

th
u_l

ip l_li
p

ha
ir ha

t
ea

r_r ne
ck

clo
th

bg

skin

nose

eye_g

eye

brow

ear

mouth

u_lip

l_lip

hair

hat

ear_r

neck

cloth

0.46 0.06 0.05 0.03 0.07 0.01 0.04 0.03 0.04 0.02 0.19 0.15 0.04 0.03 0.10

0.06 0.43 0.10 0.06 -0.01 0.10 0.11 -0.00 0.03 0.03 0.08 0.05 0.06 0.10 0.06

0.05 0.10 0.65 0.07 0.04 0.12 0.07 0.09 0.15 0.09 0.01 0.00 0.02 0.06 0.02

0.03 0.06 0.07 0.21 0.14 0.18 0.07 0.11 0.10 0.11 0.09 0.07 0.07 0.11 0.07

0.07 -0.01 0.04 0.14 0.72 0.12 0.03 0.30 0.17 0.23 0.11 0.07 0.04 0.02 0.04

0.01 0.10 0.12 0.18 0.12 0.48 0.07 0.09 0.11 0.11 0.04 0.03 0.07 0.13 0.05

0.04 0.11 0.07 0.07 0.03 0.07 0.30 0.05 0.05 0.07 0.10 0.08 0.15 0.11 0.10

0.03 -0.00 0.09 0.11 0.30 0.09 0.05 0.58 0.47 0.45 0.05 0.04 0.02 0.03 0.02

0.04 0.03 0.15 0.10 0.17 0.11 0.05 0.47 0.59 0.38 0.05 0.02 0.02 0.04 0.01

0.02 0.03 0.09 0.11 0.23 0.11 0.07 0.45 0.38 0.48 0.04 0.02 0.03 0.08 0.03

0.19 0.08 0.01 0.09 0.11 0.04 0.10 0.05 0.05 0.04 0.45 0.20 0.08 0.07 0.11

0.15 0.05 0.00 0.07 0.07 0.03 0.08 0.04 0.02 0.02 0.20 0.16 0.07 0.07 0.11

0.04 0.06 0.02 0.07 0.04 0.07 0.15 0.02 0.02 0.03 0.08 0.07 0.23 0.14 0.10

0.03 0.10 0.06 0.11 0.02 0.13 0.11 0.03 0.04 0.08 0.07 0.07 0.14 0.31 0.16

0.10 0.06 0.02 0.07 0.04 0.05 0.10 0.02 0.01 0.03 0.11 0.11 0.10 0.16 0.17

(a) StyleGAN-CelebAHQ

bg ski
n

no
se

ey
e_g ey

e
bro

w ea
r
mou

th
u_l

ip l_li
p

ha
ir ha

t
ea

r_r ne
ck

clo
th

bg

skin

nose

eye_g

eye

brow

ear

mouth

u_lip

l_lip

hair

hat

ear_r

neck

cloth

0.78 0.08 0.03 0.03 -0.00 0.04 0.14 -0.00 0.01 0.01 0.39 0.35 0.08 0.09 0.20

0.08 0.66 0.24 0.13 0.11 0.30 0.18 0.12 0.16 0.17 0.20 0.08 0.13 0.16 0.07

0.03 0.24 0.78 0.28 0.28 0.40 0.12 0.23 0.30 0.25 0.05 0.03 0.12 0.17 0.06

0.03 0.13 0.28 0.67 0.46 0.41 0.10 0.25 0.28 0.23 0.06 0.02 0.12 0.12 0.05

-0.00 0.11 0.28 0.46 0.81 0.31 0.10 0.30 0.26 0.27 0.05 0.03 0.10 0.11 0.06

0.04 0.30 0.40 0.41 0.31 0.74 0.14 0.21 0.30 0.23 0.08 0.03 0.12 0.18 0.06

0.14 0.18 0.12 0.10 0.10 0.14 0.46 0.10 0.12 0.13 0.20 0.14 0.29 0.22 0.18

-0.00 0.12 0.23 0.25 0.30 0.21 0.10 0.73 0.64 0.60 0.04 0.02 0.12 0.15 0.07

0.01 0.16 0.30 0.28 0.26 0.30 0.12 0.64 0.78 0.54 0.04 0.02 0.13 0.16 0.06

0.01 0.17 0.25 0.23 0.27 0.23 0.13 0.60 0.54 0.68 0.04 0.03 0.14 0.20 0.10

0.39 0.20 0.05 0.06 0.05 0.08 0.20 0.04 0.04 0.04 0.65 0.29 0.13 0.11 0.18

0.35 0.08 0.03 0.02 0.03 0.03 0.14 0.02 0.02 0.03 0.29 0.31 0.10 0.10 0.22

0.08 0.13 0.12 0.12 0.10 0.12 0.29 0.12 0.13 0.14 0.13 0.10 0.56 0.30 0.20

0.09 0.16 0.17 0.12 0.11 0.18 0.22 0.15 0.16 0.20 0.11 0.10 0.30 0.53 0.31

0.20 0.07 0.06 0.05 0.06 0.06 0.18 0.07 0.06 0.10 0.18 0.22 0.20 0.31 0.43

(b) StyleGAN2-FFHQ

Figure 3.3: The cosine similarity between categories for GANs trained on face dataset. The fea-
tures for each category are collected using Algorithm 1.

3.3 Summary and Remarks

In this section, we conduct experiments to support LSE’s sufficiency for extracting semantics

from the generator. First of all, we evaluate LSE, NSE-1, and NSE-2 and observe that the relative

performance drop of LSEs compared to NSEs are mostly within 3.5%. Second, we propose few-

shot learning of LSEs, which achieves performance comparable to fully supervised LSEs with as

22

few as 16 annotations. Lastly, we present geometrical evidence that features in the same category

are clustered and features in different categories are well-separated. In conclusion, it is backed that

GANs indeed use a linear notion to embed semantics.

Our approach differs from the prior work GAN Dissection [18] that identifies units (slices along

depth axis) correlating with a specific semantic class. Most units are found in middle-level feature

maps, resulting in a lower resolution than the network output. Also, they did not study the per-

pixel category belonging and thus form semantic masks. In contrast, the semantics extracted by

LSE are of high resolution (the same as the output image) and have sharp boundaries. Notice that

there is no conflict between our results and GAN Dissection: having some units correlated with the

semantic concept indicates that we can linearly combine them to get more accurate segmentation.

Another prior work by Collins et al. [34] clusters features of a particular GAN layer for image

editing purpose. They use unsupervised KMeans on a single layer to get rough semantic masks,

while we use supervised and few-shot learning method on all GAN layers to get precise semantic

segmentations.

The simplicity of the linear semantic embedding not only enables a low-cost way of extracting

semantics from GANs, but also inspires novel image editing applications.

23

Chapter 4: Applications

We have shown that it is possible to train LSE in few-shot settings. In this chapter, we leverage

the simplicity of LSE to control the image semantics in GAN’s generation process.

4.1 Few-shot Semantic Image Editing

Algorithm. In many cases, the user may want to control a GAN’s image generation process. For

example, they might want to adjust the hair color of a generated facial image from blond to red; and

the user may draw a red stroke on the hair to easily specify their intent. Existing approaches, such

as color space editing [40, 41, 50, 51], aim to find a latent vector that generates an image better

matching the user specification. The latent vector is often found by minimizing a differentiable

distance between the generated image and the user’s strokes in color space. The general pipeline

of the optimization formulation can be summarized by Algorithm 2, whose inputs are the generator

�, the edit loss !, the optional regularization loss !A46, and total iteration number # .

For color space editing, the editing loss will be the color editing loss !2, defined as !2 =

1
| |" | |22
| |" � (� (I8) − �) | |22, where � is the color stroke, " is the mask of the modified region.

However, without explicit notion of semantics, the minimization process may not respect image

semantics, leading to undesired changes of shapes and textures. For example, in the 2nd row and

2nd and 3rd columns of Figure 4.2, the user wishes to remove the hair in generated images, but the

color space editing methods tend to just lighten the hair color rather than removing it.

Leveraging LSE, we propose an approached called Semantic Image Editing (SIE) to enable

semantic-aware image generation. We define a semantic edit loss !B = L(%(� (I)), .), where

L(·) is the cross-entropy loss, . is the target semantic mask, and % is a pretrained segmentation

model such as our LSE. Starting from an image’s latent vector I, we find an output image’s latent

24

Algorithm 2: Image editing algorithm.
Input: �; !; !A46; #
Output: latent code I
for 8 = 1, . . . , # do

I8 ← I8−1 + optimizer(! (I8−1) + !reg(I8−1))
I ← I#

(a) Choose semantic category. (b) Modify semantic mask.

(c) Submit to server. (d) Result returned from server.

Figure 4.1: The web application for Semantic Image Editing. The user stroke data is collected
using this portal.

vector I′ by minimizing the loss.

In practice, we also add a regularization loss composed by items including the color preser-

vation loss !? =
| | (1−")�(� (I8)−� (I0)) | |22

| |1−" | |22
, the neighbor regularization loss != = | |I8 − I0 | |22, and the

prior regularization loss !I = | |I8 | |22. I8 denotes the latent vector for the 8-th iteration and I0 denotes

the initial latent vector. For color space editing, its total loss is ! = !B + 10−3!= + 10−3!I. For

SIE, the total loss is ! = !2 + !? + 10−3!= + 10−3!I. We use Adam as the optimizer with default

parameters. The optimization repeats for 50 iterations with a learning rate fixed to be 0.01.

25

original color stroke edit SIE(UNet) SIE(8-shot LSE) SIE(LSE)semantic stroke

Figure 4.2: Results of Semantic Image Editing (SIE) on StyleGAN2-FFHQ. Images edited with
color strokes are shown in col 2 and 3. Col 4 and 5 show LSE’s original segmentation mask and
the user-editied semantic masks. The rest of columns show the results of SIE(UNet), SIE(8-shot
LSE), and SIE(LSE), respectively.

Application. The data used for evaluation is collected from user interaction with our web appli-

cation (Figure 4.1). Here, we compare the results of SIE using different segmentation networks,

including UNet, our 8-shot LSE, and fully trained LSE. The qualitative results are shown in Fig-

ure 4.2. For each instance, we include both the results of color-space editing and semantic editing,

In practice, our image editing application work in two steps: The first step is to annotate 1

to 8 images sampled from GAN. The backend of the application will then train a few-shot LSE

using the annotations. The second step is to edit any sampled images. The editing interface will

provide the semantic mask extracted by the few-shot LSE along with the image. When the user

wants to edit an image, he draws some strokes on the semantic mask to form a target mask. Then,

the backend would run the editing algorithm Algorithm 2 and return an image closer to the target.

Results. Here, we compare the results of the method using different segmentation models, in-

cluding UNet, our 8-shot LSE, and fully trained LSE. Comparison along with color space editing

26

origin UNet target SIE(UNet) SIE(8-shot LSE) SIE(LSE)

+ hair

+ hair

- hair

- hair

+ mouth

- mouth

+ eye

- eye

+ ear

+ cloth

- cloth

+ glasses

+ glasses

- glasses

+ hat

✓ ✓ ✓

✗ ✗ ✗

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✗ ✗

✗ ✓ ✓

✓ ✓ ✓

Figure 4.3: More SIE results on StyleGAN2-FFHQ. Annotations on the left are users’ edit inten-
tions. The following columns are original images, the face segmentation from UNet, the modified
semantic mask by the user, the results from SIE(UNet), SIE(8-shot LSE), and SIE(LSE), respec-
tively. The green ticks and red crosses represent whether the editing success or not. Other yellow
ticks indicate that the image quality degrades.

27

are shown in Figure 4.2.

First, SIE(UNet) controls image generation and better preserves semantics than color-space

editing. In comparison to the results of color-space editing, the undesired changes in output images

are greatly reduced, although SIE(UNet) may still fail to transform the image’s semantics: for

instance, in the 1st and 2nd row of Figure 4.2, SIE(UNet) barely changes the original image. We

speculate that this is because the gradient from !B is carried through the entire UNet, making the

optimization process more difficult.

We also present comparisons between SIE methods only in Figure 4.3. Various types of se-

mantic editing operations are shown as editing examples. In most cases, SIE(8-shot LSE) edits the

semantics better than SIE(UNet): SIE(8-shot LSE) matches the user intent in most cases, while

SIE(UNet) often fails to transform images accordingly. The supported editing operations are di-

verse, while sometimes the editing fails to match user intention or suffers from image quality loss.

For example, row 5 and 6 of Figure 4.2 and the third row from bottom of Figure 4.3, the image

quality of SCS(8-shot LSE) degrades. We speculate a possible reason to be the rareness of cat-

egory “hat” and “eyeglasses” in GAN. When only a small portion of latent space generates rare

categories, it is difficult to travel from a common-category latent code to a rare-category latent

code. Therefore, we believe the bottleneck of SIE lies on the capability of GAN models.

In summary, we propose an editing method that is able to adjust precise semantics structures

of GAN’s images.

4.2 Few-shot Semantic Conditional Sampling

Algorithm. Semantic-Conditional Sampling (SCS) aims to synthesize an image subject to a se-

mantic mask. It offers the user more control over the image generation process. SCS has been

explored [16, 17], but most previous works rely on large annotated datasets to train their models.

Thanks to its simplicity, our LSE can be trained with a small set of annotated images (recall our

few-shot LSE). Here we leverage it to build a few-shot SCS algorithm. It is the need of only a few

labeled images that differs our method from existing image-to-image translation methods [15, 14,

28

(a) SCS using UNet (baseline).

(b) SCS using 8-shot LSE (ours).

Figure 4.4: SCS on StyleGAN2-FFHQ. Best viewed in color.

17, 16, 30].

We present our SCS algorithm in Algorithm 3. Its inputs are the current latent code I, the target

semantic segmentation . , the generator �, the semantic predictor %, the initialization number =init,

and the iteration number # . Its output will be image samples that respect the given mask . . In

practice, we use =init = 10 for SCS on face images. =init = 100 is used for bedroom and church

images, as they are much more diverse than faces. The optimization is repeated for 50 iterations.

The optimizer is Adam with default hyperparameters (lr=10−3, V1 = 0.9, V2 = 0.999).

Algorithm 3: Semantic-Conditional Sampling algorithm.
Input: �; %; . ; =init; #
Output: latent code I
Ī8 ∼ # (0, �), 8 = 1, . . . , =init
(8 = %(� (Ī8))
%8 = |{? |(8,? = .?}|
I0 = ĪU, U = 0A6<8=8%8
for 8 = 1, . . . , # do

! = L(%(� (I8−1)), .)
I8 = optimizer(!, I8−1)

I ← I#

29

(a) SCS using DeepLabV3 (baseline).

(b) SCS using 8-shot LSE (ours).

Figure 4.5: SCS on StyleGAN2-Bedroom. Best viewed in color.

Evalution. Our proposed method plugs in a few-shot LSE for %, while the baseline uses a pre-

trained segmentation network as %. To evaluate the performance of SCS models, we again rely on

a pretrained segmentation network, %∗. Formally, let the set of targets be Y. The images sampled

by a SCS model given a target .8 are denoted as a set I8. The semantic agreement � of sampled

images can be measured by the mean IoU between the predicted segmentation masks and the target

mask:

�(I,Y; %∗) =
∑

1≤8≤|Y|
1≤ 9≤|I8 |

1
|I8 | |Y|

mIoU(.8, %∗(�8, 9)) (4.1)

In practice, we select 100 target masks and conditionally sample 10 images for each target, i.e.,

|Y| = 100 and |I8 | = 10. As a result, we obtain 1,000 images for the evaluation of each setting of

SCS. To account for the variance of few-shot LSEs, we repeat SCS with different training repeat

of few-shot LSEs, as mentioned in Section 2.1.1.

The baseline can also be evaluated using this metric. However, the pretrained network used by

the baseline is exactly the same as the one used in evaluation. This is slightly biased toward the

30

(a) SCS using DeepLabV3 (baseline).

(b) SCS using 8-shot LSE (ours).

Figure 4.6: SCS on StyleGAN2-Church. Best viewed in color.

baseline, yet our method is still able to match or surpass the baseline. The results for the baseline

indicate the hampering factors for the SCS task other than the few-shot LSE. One should also

notice that it is not fair comparing to baseline because our semantic extractor is trained in few-

shot settings, while the pretrained segmentation network is carefully trained with full supervision.

Therefore, a comparable semantic accuracy is strong enough to support the effectiveness of the

few-shot LSE.

Qualitative results. We present conditionally sampled images of the baseline and our method in

a group.

The results for SCS on facial images are shown in Figure 4.4. First of all, in the results of

SCS(UNet), the mouth shape is sometimes not matched (last two columns of row 1), indicating

that SCS using a fully supervised model is still a very challenging task. Next, using 8-shot LSE,

the image samples match their targets well. The target in the last row is particularly hard because

two rare categories, eyeglasses, and hat, appear concurrently in the same image. Segmenting them

under few-shot settings should have been very difficult, but the SCS using 8-shot LSE successfully

31

N Church Bedroom FFHQ
1 16.0 ± 1.4 17.5 ± 2.0 37.2 ± 0.8
4 18.0 ± 1.3 21.6 ± 0.9 39.1 ± 0.5
8 19.6 ± 0.5 21.7 ± 0.8 39.4 ± 0.9

16 20.4 ± 0.6 22.3 ± 0.4 40.0 ± 0.2
baseline 23.1 17.3 34.3

Table 4.1: The semantic accuracy measures the semantic agreement between generated images
and targets. For SCS with few-shot LSEs, each model is trained for 5 times with different training
data to account for the training data variance. The numbers before ± sign are the average results
of the 5 repeats, and the numbers following ± indicate the maximum deviations from the average.
Experiments are done on StyleGAN2.

obtains close results to the baseline.

Results of SCS on bedroom images are shown in Figure 4.5. First, in the results of the baseline,

we observe that some small objects are not matched to the target while the main object like bed

and window mostly match. This indicates that for bedroom scenes, matching the small objects is

harder than the main objects. Second, our method successfully samples images that are matched to

the given layout, as shown in row 1 in Figure 4.5b. The successful attempts in row 2 are relatively

fewer but are comparable to the baseline.

Figure 4.6 shows the results of SCS on StyleGAN2-Church. As shown in Figure 4.6a, even the

baseline using DeepLabV3 cannot perfectly reconstruct churches’ shapes specified by the target,

while the rough layout is matched. For example, the tower tends to be thick in row 1 and slim in

row 2, which is consistent with the target mask. For our method, a similar rough matching is also

observed.

Lastly, notice that for all datasets, there are no duplicates and very few similar images in SCS

results. This shows that our sampling is diverse and does not overfit a specific target.

Quantitative results. We calculate the semantic accuracy for SCS using pretrained segmenter

and few-shot LSEs according to the definition in (4.1). Table 4.1 shows the results.

On the church dataset, the SCS with few-shot LSEs is worse than the baseline, while on the

bedroom dataset and the face dataset, our method is better than the baseline. It is indicated that the

32

few-shot LSE is strong such that its performance on SCS is even better than pretrained segmenter.

33

Conclusion

In this work, we study how the image semantics are embedded in GAN’s feature maps. We

propose a Linear Semantic Extractor (LSE) to extract image semantics modeled by GANs.

Experiments on various GANs and datasets show that LSE can indeed reveal the semantics from

feature maps. We also study the class centers and cosine similarities between different classes to

provide geometric interpretation of our LSE. Therefore, it is well-backed that GANs use a linear

notion to encode semantics. Then, we successfully train LSEs in few-shot settings. Using only 16

training annotations, we obtain 73.5%, 78.3%, and 88.1% performance relative to fully

supervised LSEs on the church, bedroom, and face images.

Finally, we build two novel applications based on few-shot LSEs: the few-shot

Semantic-Conditional Sampling and the few-shot Semantic Image Editing. Our methods can

match or surpass the baselines using fully supervised segmentation networks. Using the proposed

methods, users can exert precise and diverse spatial semantic controllability over pretrained GAN

models with only a few annotations.

34

References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–2680.

[2] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved
quality, stability, and variation,” arXiv preprint arXiv:1710.10196, 2017.

[3] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 4401–4410.

[4] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep
convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[5] J. Johnson, A. Gupta, and L. Fei-Fei, “Image Generation from Scene Graphs,”
arXiv e-prints, arXiv:1804.01622, arXiv:1804.01622, Apr. 2018. arXiv: 1804.01622
[cs.CV].

[6] D. Berthelot, T. Schumm, and L. Metz, “Began: Boundary equilibrium generative
adversarial networks,” Arxiv, 2017.

[7] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and
improving the image quality of stylegan,” arXiv preprint arXiv:1912.04958, 2019.

[8] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “InfoGAN:
Interpretable Representation Learning by Information Maximizing Generative Adversarial
Nets,” arXiv e-prints, arXiv:1606.03657, arXiv:1606.03657, Jun. 2016. arXiv:
1606.03657 [cs.LG].

[9] A. Odena, C. Olah, and J. Shlens, “Conditional Image Synthesis With Auxiliary Classifier
GANs,” arXiv e-prints, arXiv:1610.09585, arXiv:1610.09585, Oct. 2016. arXiv:
1610.09585 [stat.ML].

[10] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas, “Stackgan: Text
to photo-realistic image synthesis with stacked generative adversarial networks,” in
Proceedings of the IEEE international conference on computer vision, 2017,
pp. 5907–5915.

35

https://arxiv.org/abs/1804.01622
https://arxiv.org/abs/1804.01622
https://arxiv.org/abs/1606.03657
https://arxiv.org/abs/1610.09585

[11] Y. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the latent space of gans for semantic
face editing,” arXiv preprint arXiv:1907.10786, 2019.

[12] C. Yang, Y. Shen, and B. Zhou, “Semantic hierarchy emerges in deep generative
representations for scene synthesis,” arXiv preprint arXiv:1911.09267, 2019.

[13] A. Jahanian, L. Chai, and P. Isola, “On the”steerability" of generative adversarial
networks,” arXiv preprint arXiv:1907.07171, 2019.

[14] J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using
cycle-consistent adversarial networks,” 2017.

[15] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional
adversarial networks,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 5967–5976.

[16] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, “Gaugan: Semantic image synthesis with
spatially adaptive normalization,” in ACM SIGGRAPH 2019 Real-Time Live! 2019,
pp. 1–1.

[17] P. Zhu, R. Abdal, Y. Qin, and P. Wonka, “Sean: Image synthesis with semantic
region-adaptive normalization,” 2019.

[18] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T. Freeman, and A. Torralba,
“Gan dissection: Visualizing and understanding generative adversarial networks,”
arXiv preprint arXiv:1811.10597, 2018.

[19] D. Bau, S. Liu, T. Wang, J.-Y. Zhu, and A. Torralba, “Rewriting a deep generative model,”
in Proceedings of the European Conference on Computer Vision (ECCV), 2020.

[20] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in
Proceedings of International Conference on Computer Vision (ICCV), 2015.

[21] X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Belongie, “Stacked generative
adversarial networks,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 5077–5086.

[22] J. Zhao, M. Mathieu, and Y. LeCun, Energy-based generative adversarial network, 2017.
arXiv: 1609.03126 [cs.LG].

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in

36

https://arxiv.org/abs/1609.03126

2009 IEEE conference on computer vision and pattern recognition, Ieee, 2009,
pp. 248–255.

[24] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative adversarial
networks,” arXiv preprint arXiv:1805.08318, 2018.

[25] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity natural
image synthesis,” arXiv preprint arXiv:1809.11096, 2018.

[26] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,”
arXiv preprint arXiv:1701.07875, 2017.

[27] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved
training of wasserstein gans,” in Advances in neural information processing systems, 2017,
pp. 5767–5777.

[28] N. Kodali, J. Abernethy, J. Hays, and Z. Kira, “On convergence and stability of gans,”
arXiv preprint arXiv:1705.07215, 2017.

[29] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive instance
normalization,” 2017.

[30] T. C. Wang, M. Y. Liu, J. Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-resolution
image synthesis and semantic manipulation with conditional gans,” 2017.

[31] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,”
in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[32] Y. Shen and B. Zhou, “Closed-form factorization of latent semantics in gans,” 2020.

[33] A. Voynov and A. Babenko, “Unsupervised discovery of interpretable directions in the gan
latent space,” arXiv preprint arXiv:2002.03754, 2020.

[34] E. Collins, R. Bala, B. Price, and S. Süsstrunk, “Editing in style: Uncovering the local
semantics of GANs,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[35] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and
A. Courville, “Adversarially learned inference,” arXiv preprint arXiv:1606.00704, 2016.

[36] R. Abdal, P. Zhu, N. Mitra, and P. Wonka, “StyleFlow: Attribute-conditioned Exploration
of StyleGAN-Generated Images using Conditional Continuous Normalizing Flows,”

37

arXiv e-prints, arXiv:2008.02401, arXiv:2008.02401, Aug. 2020. arXiv: 2008.02401
[cs.CV].

[37] P. Ghosh, P. S. Gupta, R. Uziel, A. Ranjan, M. Black, and T. Bolkart, “Gif: Generative
interpretable faces,” 2020. arXiv: 2009.00149 [cs.CV].

[38] A. Tewari, M. Elgharib, G. Bharaj, F. Bernard, H.-P. Seidel, P. Pérez, M. Zollhöfer, and
C. Theobalt, “Stylerig: Rigging stylegan for 3d control over portrait images,” 2020. arXiv:
2004.00121 [cs.CV].

[39] Y. Zhang, W. Chen, H. Ling, J. Gao, Y. Zhang, A. Torralba, and S. Fidler, “Image gans
meet differentiable rendering for inverse graphics and interpretable 3d neural rendering,”
2020. arXiv: 2010.09125 [cs.CV].

[40] J. Y. Zhu, P. Krhenbühl, E. Shechtman, and A. A. Efros, “Generative visual manipulation
on the natural image manifold,” 2016.

[41] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Neural photo editing with introspective
adversarial networks,” ArXiv, vol. abs/1609.07093, 2017.

[42] R. Suzuki, M. Koyama, T. Miyato, T. Yonetsuji, and H. Zhu, “Spatially Controllable Image
Synthesis with Internal Representation Collaging,” arXiv e-prints, arXiv:1811.10153,
arXiv:1811.10153, Nov. 2018. arXiv: 1811.10153 [cs.CV].

[43] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” in
International Conference on Medical image computing and computer-assisted intervention,
Springer, 2015, pp. 234–241.

[44] L. C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for
semantic image segmentation,” 2017.

[45] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He, J. Mueller, and
R. a. Manmatha, “Resnest: Split-attention networks,” 2020.

[46] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “Lsun: Construction of a
large-scale image dataset using deep learning with humans in the loop,”
arXiv preprint arXiv:1506.03365, 2015.

[47] C.-H. Lee, Z. Liu, L. Wu, and P. Luo, “Maskgan: Towards diverse and interactive facial
image manipulation,” arXiv preprint arXiv:1907.11922, 2019.

[48] B. Zhou, H. Zhao, F. X. P. Fernandez, S. Fidler, and A. Torralba, “Scene parsing through
ade20k dataset,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

38

https://arxiv.org/abs/2008.02401
https://arxiv.org/abs/2008.02401
https://arxiv.org/abs/2009.00149
https://arxiv.org/abs/2004.00121
https://arxiv.org/abs/2010.09125
https://arxiv.org/abs/1811.10153

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[50] R. Abdal, Y. Qin, and P. Wonka, “Image2stylegan++: How to edit the embedded images?,”
2019.

[51] J. Zhu, Y. Shen, D. Zhao, and B. Zhou, “In-domain gan inversion for real image editing,”
2020.

39

Appendix A: Appendix

A.1 Proof of commutative property

Suppose that a pixel ? that we want to interpolate lies in the rectangle of four pixels (G11, G12, G21, G22)

and its relative position is described by (U, V) as distance ratio to the edges of the rectangle. The

interpolated value is

u↑? (G11, G12, G21, G22, U, V) = (1 − V) [(1 − U)G11 + UG12] + V[(1 − U)G21 + UG22] (A.1)

When we do convolution then upsample, we get the following result

u↑? (T8G11,T8G12,T8G21,T8G22, U, V)

=(1 − V) [(1 − U)T8G11 + UT8G12] + V[(1 − U)T8G21 + UT8G22]

=T8 (1 − V) [(1 − U)G11 + UG12] + T8V[(1 − U)G21 + UG22]

=T8u↑? (G11, G12, G21, G22, U, V)

(A.2)

which is exactly upsampling then convoluting.

A.2 Definition of IoU

Intersection-over-Union (IoU) is a widely used metric in semantic segmentation literature. A

segmentation of a category is represented as a set of pixels among all pixels that belong to this

category. Suppose we have a segmentation � and �, their IoU is IoU(�, �) = |�∩� |
|�∪� | . Taking the

average across a set of segmentations A = {�8} and B = {�8}, we get the average IoU on this

dataset:

40

skin nose eye-g eye brow ear mouth u-lip l-lip hair hat ear-r neck cloth
StyleGAN2-FFHQ

LSE 95.9% 94.7% 69.9% 91.0% 83.5% 80.5% 84.5% 87.8% 91.2% 92.9% 11.1% 22.8% 91.0% 72.5%
NSE-1 97.0% 95.4% 72.4% 92.1% 88.2% 83.0% 87.4% 91.6% 92.8% 94.2% 12.9% 34.0% 92.9% 75.9%
NSE-2 96.9% 95.3% 73.4% 92.0% 87.7% 82.8% 87.7% 90.9% 92.9% 94.1% 12.9% 28.6% 92.4% 72.8%

StyleGAN-CelebAHQ
LSE 93.9% 91.3% 25.7% 86.2% 75.9% 63.5% 75.6% 81.1% 85.4% 87.5% 0.0% 13.1% 84.5% 35.9%

NSE-1 95.8% 93.6% 22.8% 89.3% 83.2% 69.4% 78.8% 87.4% 88.7% 90.8% 0.3% 21.3% 88.0% 41.2%
NSE-2 96.0% 94.1% 22.1% 89.4% 84.7% 69.7% 79.0% 88.0% 89.5% 90.9% 0.0% 19.0% 87.8% 39.2%

PGGAN-CelebAHQ
LSE 92.7% 89.4% 19.7% 84.9% 71.7% 61.9% 72.4% 81.4% 84.7% 85.2% 5.0% 16.1% 79.8% 34.1%

NSE-1 93.8% 90.9% 22.0% 86.3% 78.4% 63.0% 71.6% 83.0% 85.6% 86.4% 6.3% 20.3% 81.5% 37.0%
NSE-2 94.1% 92.0% 20.8% 86.2% 78.9% 64.4% 73.0% 83.9% 86.4% 86.9% 6.2% 21.3% 82.2% 37.4%

Table A.1: The IoU for each category (excluding background category) of LSE, NSE-1 and NSE-2
on facial datasets. The ground-truth used in the IoU computation is obtained from UNet.

�>* (A,B) = 1
#

∑
�8∪�8≠∅

�>* (�8, �8) (A.3)

IoU evaluates how well the segmentation is for a particular category. Mean IoU (mIoU) evalu-

ates the overall performance of multi-class segmentation. It is calculated as the mean of IoUs over

all categories.

A.3 Detailed experiment setup

Training details of the face segmenter. The UNet for face segmentation follows standard UNet

[43] architecture. It takes 512 × 512 images as input and outputs predictions with the same reso-

lution. It is trained using Adam optimizer [49] for 40 epochs (about 76k iterations), with learning

rate 3 × 10−4, V1 = 0.9, V2 = 0.999 and batch size 16. The training script is adapted from the

project repo 1 of MaskGAN [47].

Training evolution Figure A.1 shows the training evolution of semantic extractors. All the se-

mantic extractors converge during the training.

A.4 Supplementary results

1https://github.com/switchablenorms/CelebAMask-HQ

41

0 10 20 30 40 50

0.15

0.20

0.25

0.30
PGGAN-Bedroom

LSE
NSE-1
NSE-2

0 10 20 30 40 50
0.25

0.30

0.35

0.40

0.45

StyleGAN-Bedroom

LSE
NSE-1
NSE-2

0 10 20 30 40 50

0.45

0.50

0.55

0.60
StyleGAN2-Bedroom

LSE
NSE-1
NSE-2

0 10 20 30 40 50

0.275

0.300

0.325

0.350

PGGAN-Church

LSE
NSE-1
NSE-2

0 10 20 30 40 50

0.275

0.300

0.325

0.350

0.375

StyleGAN-Church

LSE
NSE-1
NSE-2

0 10 20 30 40 50

0.34

0.36

0.38

0.40

StyleGAN2-Church

LSE
NSE-1
NSE-2

0 10 20 30 40 50

0.275

0.300

0.325

0.350

PGGAN-Church

LSE
NSE-1
NSE-2

0 10 20 30 40 50

0.275

0.300

0.325

0.350

0.375

StyleGAN-Church

LSE
NSE-1
NSE-2

0 10 20 30 40 50

0.34

0.36

0.38

0.40

StyleGAN2-Church

LSE
NSE-1
NSE-2

Figure A.1: Training evolution of mIoU of all the semantic extractors on all datasets.

42

wall floor ceiling bed win. table curtain painting lamp cushion pillow flower light chdr. fan clock
LSE 91.29 85.56 88.47 90.53 75.58 67.19 43.13 68.79 59.43 32.29 46.05 12.98 36.73 18.06 37.79 14.77

NSE-1 92.13 87.06 89.79 91.99 76.40 69.98 46.14 73.71 62.70 34.21 48.10 15.76 40.04 20.34 45.62 12.39
NSE-2 91.56 86.22 88.78 91.15 72.94 67.52 42.77 69.43 58.61 30.87 46.20 4.76 26.75 12.51 35.14 5.39
LSE 91.29 85.95 88.27 90.94 76.23 67.31 42.08 69.29 59.28 31.17 45.57 11.77 36.17 18.07 35.72 13.62

NSE-1 92.21 87.12 89.05 91.80 76.37 69.62 45.74 71.69 62.34 33.22 47.98 12.40 39.10 18.57 43.28 12.74
NSE-2 91.66 86.31 88.65 91.21 74.79 68.85 43.66 70.70 60.51 26.36 45.34 4.01 31.83 11.22 30.61 7.13

(a) StyleGAN2-Bedroom

wall floor ceiling bed win. table curtain chair painting rug wdrb. lamp cushion chest pillow flower light chdr. fan
LSE 82.30 74.12 73.79 88.28 55.34 47.58 37.13 9.10 64.01 8.93 11.07 42.91 33.42 19.09 46.51 9.02 11.45 22.70 18.55

NSE-1 83.78 75.50 76.55 89.40 57.24 50.63 40.96 10.52 67.41 11.54 12.31 48.90 36.62 18.66 49.07 10.67 25.08 26.49 29.66
NSE-2 83.05 74.61 75.44 89.34 53.99 47.98 39.63 6.03 64.04 5.11 8.78 45.89 35.95 17.45 48.88 3.02 12.32 16.52 21.49
LSE 83.12 74.70 73.90 88.82 56.80 45.78 37.19 10.24 62.87 9.35 10.81 42.43 33.26 20.91 46.19 7.17 11.01 25.37 18.18

NSE-1 84.37 75.01 76.30 89.90 58.27 49.78 39.98 11.95 66.87 12.77 12.04 49.36 35.88 22.91 48.95 10.32 24.10 25.93 27.83
NSE-2 83.81 74.19 75.38 89.64 55.27 47.43 40.03 11.23 63.60 6.76 9.27 46.61 34.22 15.45 47.84 0.66 8.92 14.58 13.85

(b) StyleGAN-Bedroom

wall floor ceiling bed windowpane table curtain painting lamp pillow light chandelier fan
LSE 69.46 45.07 54.05 68.39 36.38 12.58 25.77 32.67 17.18 16.10 13.65 12.14 18.06

NSE-1 70.75 46.78 57.01 70.35 38.84 14.78 29.07 35.66 18.35 18.86 15.42 9.49 17.36
NSE-2 68.60 45.19 54.56 68.12 33.03 12.06 27.67 34.59 15.31 16.79 0.11 0.00 0.00
LSE 71.91 47.88 54.53 70.29 37.06 11.71 25.39 33.74 16.82 17.90 15.57 10.83 17.94

NSE-1 72.91 49.01 56.42 71.69 38.90 14.35 28.34 35.39 18.21 19.31 13.58 10.45 17.08
NSE-2 72.11 47.90 54.72 71.41 38.46 13.14 27.77 35.41 16.83 18.65 0.00 1.22 1.30

(c) PGGAN-Bedroom

building sky tree road grass sidewalk person earth plant car stairs
LSE 85.94 97.52 76.51 24.19 40.16 16.71 15.78 13.72 8.92 12.22 13.43

NSE-1 86.93 97.87 78.59 25.76 44.45 17.73 17.03 14.04 10.62 13.30 14.39
NSE-2 86.65 97.71 77.96 22.16 37.87 10.78 12.92 8.87 7.52 8.21 8.91
LSE 87.96 97.46 76.31 27.32 41.61 17.08 17.62 14.21 8.28 12.84 14.23

NSE-1 88.75 97.70 78.16 27.14 44.96 18.82 16.76 15.92 9.99 12.68 15.26
NSE-2 88.77 97.69 77.66 22.33 39.78 13.38 12.52 10.80 6.31 8.58 10.81

(d) StyleGAN2-Church

building sky tree road grass sidewalk person plant signboard path
LSE 88.18 95.53 49.14 23.29 39.34 11.07 9.42 9.32 14.11 8.52

NSE-1 88.55 95.69 54.25 25.06 42.24 11.05 11.61 12.55 22.53 10.40
NSE-2 87.74 95.34 48.18 19.77 34.36 7.79 10.11 8.51 14.37 6.63
LSE 91.30 95.53 47.46 25.30 41.63 13.08 8.39 9.17 13.80 8.84

NSE-1 92.01 96.01 53.01 28.06 44.84 13.33 11.56 12.25 16.62 10.63
NSE-2 91.58 95.66 49.60 22.96 35.72 7.95 9.47 9.12 12.69 5.40

(e) StyleGAN-Church

building sky tree road grass signboard
LSE 83.98 91.21 45.55 17.01 30.14 28.51

NSE-1 84.60 91.46 47.92 18.79 31.17 29.71
NSE-2 83.79 90.91 42.99 15.19 23.64 14.35
LSE 88.17 91.33 44.57 29.10 34.05 20.78

NSE-1 88.98 92.02 47.18 31.43 36.08 22.37
NSE-2 88.35 91.75 44.85 25.91 30.31 16.00

(f) PGGAN-Church

Table A.2: The IoU (%) of each category for LSE, NSE-1, and NSE-2 on bedroom and church
datasets. In every subtable, the first three rows show the results of models trained with full classes
during the category selection process; The last three rows show the results of the models used in
Table 3.1, obtained by re-training on the selected classes. The abbreviation “win.”, “wdrb.”, “chdr.”
stands for “windowpane”, “wardrobe”, and “chandelier”, respectively.

43

	Acknowledgments
	Dedication
	Background and Introduction
	Introduction
	Related Works
	Generative Adversarial Networks
	Interpreting GANs
	Controlling GANs

	Thesis Structure

	Decode GAN's encoding of semantics
	Linear Semantic Extractor
	Training with full supervision
	Training in few-shot settings
	Geometric Interpretation

	Nonlinear Semantic Extraction
	Summary

	Experiment
	Experiment Setup
	Results
	Evaluation of LSE
	Geometry Interpretation

	Summary and Remarks

	Applications
	Few-shot Semantic Image Editing
	Few-shot Semantic Conditional Sampling

	Conclusion
	References
	Appendix
	Proof of commutative property
	Definition of IoU
	Detailed experiment setup
	Supplementary results

