
Linear Semantics in Generative Adversarial Networks

Jianjin Xu *

Columbia University
jx2386@columbia.edu

Changxi Zheng
Columbia University
cxz@cs.columbia.edu

Abstract

Generative Adversarial Networks (GANs) are able to gen-
erate high-quality images, but it remains difficult to explicitly
specify the semantics of synthesized images. In this work,
we aim to better understand the semantic representation of
GANs, and thereby enable semantic control in GAN’s gener-
ation process. Interestingly, we find that a well-trained GAN
encodes image semantics in its internal feature maps in a
surprisingly simple way: a linear transformation of feature
maps suffices to extract the generated image semantics. To
verify this simplicity, we conduct extensive experiments on
various GANs and datasets; and thanks to this simplicity,
we are able to learn a semantic segmentation model for a
trained GAN from a small number (e.g., 8) of labeled im-
ages. Last but not least, leveraging our findings, we propose
two few-shot image editing approaches, namely Semantic-
Conditional Sampling and Semantic Image Editing. Given
a trained GAN and as few as eight semantic annotations,
the user is able to generate diverse images subject to a user-
provided semantic layout, and control the synthesized image
semantics. We have made the code publicly available1.

1. Introduction

Recent years have witnessed the striking success of Gen-
erative Adversarial Networks (GANs) [15] in various image
synthesis tasks: to generate human faces, animals, cars, and
interior scenes [28, 12, 17, 21]. Apart from improving the
generated image quality, recent research has been directed
toward the control of GAN’s image generation process—for
example, to enforce the generated images having user speci-
fied attributes, colors, and layouts.

Toward this goal, a fundamental question remains unan-
swered: how does a well-trained GAN encodes image se-
mantics—such as hair, nose, and hats in a facial image —in
its image generation process? Motivated by this question,
we aim to extract image semantics from a GAN’s internal

*Jianjin Xu is currently an assistant research scientist at Panzhihua
University.

1https://github.com/AtlantixJJ/LinearGAN

data, namely its feature maps. If we can well extract image
semantics and understand the extraction process, we can
develop insight on how the image semantics are encoded.

Our finding is surprisingly simple: a linear transforma-
tion on the GAN’s internal feature maps suffices to extract
the generated image semantics. In stark contrast to GAN’s
highly nonlinear image generation process, this simple linear
transformation is easy to understand and has a clear geomet-
ric interpretation (see Sec. 3.1).

We refer to this linear transformation process as linear se-
mantic extraction (LSE). To verify its performance, we con-
duct extensive experiments on various GANs and datasets, in-
cluding PGGAN [20], StyleGAN [21] and StyleGAN2 [22]
trained on FFHQ [21], CelebAHQ [25], and LSUN [37]’s
bedroom and church dataset. We also compare the perfor-
mance of LSE with other semantic extraction approaches
which use learned nonlinear transformations. It turns out
that LSE is highly comparable to those more complex, non-
linear models, suggesting that image semantics are indeed
represented in a linear fashion in GANs.

Related to our study of the linear encoding of image se-
mantics in GANs is the work of GAN Dissection [5]. It
identifies feature maps that have causal manipulation ability
for image semantics. Yet, most feature maps in that ap-
proach come from middle-level layers in the GAN, often
having much lower resolution than the output image. Instead,
we examine the GAN’s internal feature maps collectively.
We upsample all feature maps to the output image’s resolu-
tion and stack them into a tensor. This approach allows us to
study per-pixel feature vectors, that is, feature values corre-
sponding to a particular pixel across all internal layers, and
we are able to classify every pixel into a specific semantic
class.

The linear transformation in our proposed LSE is learned
under supervision. Its training requires image semantic an-
notations, which are automatically generated using a pre-
trained segmentation model (such as UNet [29]). Interest-
ingly, thanks to the linearity of LSE, even a small number of
annotations suffice to train LSE well. For example, the LSE
trained with 16 annotated images on StyleGAN2 (which it-
self is trained on FFHQ dataset) achieves 88.1% performance

1

relative to a fully trained LSE model. Not only does this
result further support our finding about the linear representa-
tion of semantics in GANs, it also inspires new approaches
for controlling image generation through few-shot training.

In particular, we explore two controlled image generation
tasks: (1) Semantic Image Editing (SIE) and (2) Semantic-
Conditional Sampling (SCS). The former aims to update
images based on the user’s edit on the semantics of a GAN’s
output (e.g., generate images in which the hair region is
reshaped); the latter is meant to generate images subject to a
user specification of desired semantic layout (e.g., produce
images of an interior room where the furnitures are laid out
according to user specification). We demonstrate few-shot
SIE and SCS models both trained with small number of
annotated images.

Behind both SCS and SIE is the core idea of matching the
generated image semantics with a target semantic specifica-
tion. This is done by formulating an optimization problem,
one that finds a proper latent vector for the GAN’s image
generation while respecting the user specification. We also
consider baselines of both tasks, which are implemented by
using carefully trained, off-the-shelf semantic segmentation
models rather than our few-shot LSE. In comparison to the
baselines, our approach with 8-shot LSE is able to generate
comparable (and sometimes even better) image quality.

In summary, our technical contributions are twofold: (i)
Through extensive experiments, we show that GANs rep-
resent the image’s pixel-level semantics in a linear fashion.
(ii) We propose an LSE with few-shot learning, which fur-
ther enables two image synthesis applications with semantic
control, namely SCS and SIE under few-shot settings.

2. Related work
Generative Adversarial Networks. GANs [15] have

achieved tremendous success in image generation tasks, such
as synthesizing photo-realistic facial images [20, 21, 22],
cityscapes [35, 27] and ImageNet images [38, 6]. Among
various GAN models, Progressively Grown GAN (PGGAN)
[20], StyleGAN [21] and its improvement StyleGAN2 [22]
are three of the most widely used GAN structures. PGGAN
shares a similar architecture as the Deep Convolution GAN
(DCGAN) [28], trained progressively. StyleGAN adopts the
adaptive instance normalization [16] from neural stylization
literatures to improve generation quality. Further improving
on StyleGAN, StyleGAN2 is by far the state-of-the-art GAN
model on various datasets. We therefore conduct experi-
ments on the three types of GANs.

Interpreting GANs. Our study of image semantics in
GAN models is related to the works toward interpreting
and dissecting GANs. Along this research direction, ex-
isting methods can be grouped into two categories. First
are those aiming to interpret a GAN’s latent space. Prior
works [30, 36] find that there exist linear boundaries in latent

space that separate positive and negative attributes of image
samples. Others works [31, 19, 34] propose to find linear
trajectories of attributes in the latent space in an unsuper-
vised way. Second, interpreting the feature maps of GANs.
GAN Dissection [5] identifies convolution units that have
causality with semantics in the generated images. Collins et
al. [11] find that the clusters of semantics can be found by k-
means and matrix factorization in GAN’s feature maps. Our
differences are two-fold. First, we study the high-resolution
semantic masks extracted from the generator, which is rarely
touched in existing works. Second, the SIE and SCS appli-
cations derived from our discoveries are novel in terms of
their few-shot settings.

Controlling GANs. Methods to enable GAN’s control-
lability can be divided into two streams. First, training
new GANs with architectures specifically designed to en-
able controllability. Conditional GAN (cGAN) and its vari-
ant [26, 13, 9] are proposed to enable GAN’s controllabil-
ity for category. StackGAN [40] extends cGAN by using
the embedding of natural language to control the synthesis.
The image-to-image translation networks can map semantic
masks to images [45, 18, 27, 46]. They allow explicit control
of semantic structures but need expensive labeled data for
training. Second, interpreting or devising auxilary architec-
tures to exploit the controllability of pretrained GAN models.
The controllability for global attributes is studied by many
interpretation-based editing methods [30, 36, 31, 19, 34].
Besides interpretation, other methods propose auxilary net-
works for the controllability for attributes [3] or 3D char-
acteristics [14, 33, 41]. The controllability for local image
editing also receives much research attention. The latent
code optimization methods [44, 7] can make the image re-
semble the color strokes drawn by users, but the precision
of editing is limited. The feature map substitution methods
[1, 32, 10] can edit a localized region of an image precisely,
but the editing operation requires users to find a source im-
age for reference. GAN Dissection [5] succeed in editing
the semantics of images, but its resolution and diversity are
limited. Bau et al. [4] rewrite the weight of a generator to
change its generation pattern.

The semantic controllability studied in our work differs
from previous works in two aspects. First, previous SCS
models in the context of image-to-image translation require
extensively labeled images, whereas our approach requires
only a few annotations in its training. Second, previous SIE
models (such as [5]) are mainly concerned with the control of
semantic morphology, not the user’s ability to fully specify
semantic regions. As a result, our approach requires no
reference image, and thereby eases the user editing process.

3. GAN’s Linear Embedding of Semantics
We aim to decode a GAN’s internal representation of

image semantics in its image synthesis process. Our find-

2

…

generator
segmentation

ℒ

"# "$ "%&#

'

(

)

z

…

upsample and concatenate linear transform

feature maps

Figure 1. When synthesizing an image I from a latent vector z, the generator builds a series of internal feature maps. Provided a well-trained
GAN model, we decode its feature maps {xi}N−1

i=1 to extract the output image’s semantic segmentation S. This is done by learning a simple
linear transformation applied on the feature maps. Learning the linear transformation is supervised by a pretrained segmentation model.

ing is surprisingly simple: a linear transformation on the
GAN’s feature maps suffices to reveal its synthesized image
semantics. In this section, we first construct such a linear
transformation (Sec. 3.1), and then conduct experiments
(Sec. 3.2) to examine its competence for revealing image
semantics (Sec. 3.3).

3.1. Linear Transformation on Feature Maps

A well-trained GAN model maps a randomly chosen
latent vector to a realistic image. Structurally, a GAN model
concatenates a series of network layers. Provided a latent
vector, each layer i outputs a feature map xi, which is in
turn fed into the next layer. We denote the width, height,
and depth of xi using wi, hi and ci, respectively (i.e., xi ∈
Rci×wi×hi).

It is unsurprising at all that one can deduce from the fea-
ture maps the generated image semantics. After all, feature
maps represent the GAN’s internal data flow that results in
the final image. As images can be semantically segmented
using pretrained networks, the feature map can also be seg-
mented with appropriate networks. More interesting is the
question of how easily we can learn from feature maps about
the generated image semantics. A straightforward relation
between feature maps and image semantics could be easy to
understand, and inspire new theories and applications.

Objective. Consider a GAN model consisting of N layers
and producing images with m semantic classes (such as
hair, face, and cloth). We seek the simplest possible relation
between its feature maps and output image semantics—a
linear transformation matrix Ti applied to each feature map
xi to predict a semantic map of the layer i. By accumulating
all the maps, we wish to predict a semantic segmentation S
of the GAN’s output image (see Fig. 1). Formally, S is just

a linear transformation of all feature maps, defined as

S =

N−1∑
i=1

u↑i (Ti · xi), (1)

where Ti ∈ Rm×ci converts xi ∈ Rci×wi×hi into a seman-
tic map Ti · xi ∈ Rm×wi×hi through a tensor contraction
along the depth axis. The result from each layer is then
upsampled (denoted by u↑i) to the output image resolution.
The summation extends over all internal layers, excluding
the last layer (layer N), which outputs the final image. The
result S ∈ Rm×w×h has the same spatial resolution w × h
as the output image. Each pixel Sij is a m × 1 vector, in-
dicating the pixel’s unnormalized logarithmic probabilities
representing each of the m semantic classes. We refer to this
method as Linear Semantic Extractor (LSE).
Optimizing Ti. The training process of LSE is supervised
by pixel-level annotation of semantics. Yet, it is impractical
to manually annotate a large set of images that are automat-
ically generated by a GAN model. Instead, we leverage
off-the-shelf pretrained segmentation models for semantic
annotation. In practice, we use UNet [29] to segment facial
images (into the nose, eye, ear, and other semantic regions),
and DeepLabV3 [8] with ResNeSt backbone [39] for bed-
room and church images.

Concretely, provided a well-trained GAN model, we ran-
domly sample its latent space to produce a set S of synthetic
images. When synthesizing every image in S, we also record
the model’s feature maps {xi}N−1i=1 . These feature maps are
linearly transformed using (1) to predict a semantic mask
of the image, which is then compared with the result from
the pretrained semantic segmentation network to form the
standard cross-entropy loss function:

L =
1

w · h
∑

1≤i≤w
1≤j≤h

[
log

(
m∑
k=1

exp (Sij [k])

)
− Sij [Yij]

]
,

3

…𝑢!↑(𝑥!) 𝑢#↑(𝑥#) 𝑢$%!↑ (𝑥$%!)

𝑋!"

(a) upsampled feature maps X

⋅ =
#$%

&' &(… &)*'

+$%

&
(b) dot product Sij = T ·Xij

Figure 2. The visualization of the linear transformation, with up-
sample placed before convolution.

where Yij is the semantic class at pixel (i, j) indicated by the
supervisor network, and Sij [k] is the corresponding unnor-
malized logarithmic probability for the k-th semantic class
predicted by the LSE.

Lastly, the linear matrices Ti are optimized by minimiz-
ing the expected loss (estimated by taking the average loss
over image batches in S). Details of the training process are
provided in Appx. D.
Geometric picture. The linear relation (1) allows us to
draw an intuitive geometric picture of how image semantics
are encoded in the generator’s feature maps.

First, notice that Ti applied on xi can be viewed as a
1×1 convolutional filter with stride 1. The filter operation is
commutative with the upsample operation u↑i (·) (see Appx. B
for a proof of this commutative property). As a result, we
can rewrite the semantic prediction S in (1) as

S =

N−1∑
i=1

Ti · u↑i (xi) = T ·X, (2)

where T =
[
T1 . . . TN−1

]
is an m × n matrix with

n =
∑N−1
i=1 ci being the total layer depth. X ∈ Rn×w×h is

a tensor concatenating all upsampled xi (i.e., u↑i (xi) with
resolution ci × w × h) along the depth axis (see Fig. 2a).

Now, consider a pixel (i, j) in the output image. To
predict its semantic class, Equation (2) shows that we can
take the corresponding n×1 vector Xij that stacks the pixel’s
features resulted from all GAN layers, and dot product it
with each row of T (see Fig. 2b): Sij = T ·Xij . In other
words, each row T(k) of T defines a direction representing
the semantic class k in the n-dimensional feature space.

If the linear transformation can classify features with
high accuracy, then the feature vectors of different semantic
classes are linearly separable. Define the set of all vectors
that are classified into class k as

Rk = {x|T(k)x > T(j)x,∀j 6= k}, (3)

where T(k) is the k-th row of the tensor T. This definition
shows that the subspace of each semantic class forms a
hyper-cone originating from the origin.

An intuitive geometric picture is as follows. Consider a
unit n-sphere at the origin. The intersection of a semantic

class i’s hyper-cone and the sphere surface encloses a con-
vex area Ai. Then, take the feature values at a pixel and
normalize it into a unit vector. If that vector falls into the
convex area Ai, then the pixel is classified as the class i. In
other words, the surface of n-sphere is divided into k convex
areas, each representing a semantic class. From this geomet-
ric perspective, we can even infer a pixel’s semantic class
without training the linear model (1). Rather, we locate a
semantic center ci for each convex area Ai on the n-sphere
surface. For example, the semantic centers can be estimated
by a clustering algorithm (such as k-means clustering). A
pixel is classified as class i if its feature vector is closest to ci
(among all semantic centers) on the n-sphere. In Sec. 3.3, we
show that the class centers can segment images reasonably
well, supporting our hyper-cone interpretation.
Nonlinear semantic extraction. If LSE can extract the
semantics of generated images, a further question is to what
extent the semantics can be better extracted by nonlinear
models. The answer to this question provides further support
on whether or not feature maps in GANs indeed encode
image semantics linearly. If they do, then nonlinear models
would perform no significantly better than our linear model.

We propose two nonlinear extraction models for this study.
The first Nonlinear Semantic Extractor (which we referred
to as NSE-1) transforms each layer’s feature maps through
three convolutional layers interleaved with ReLU activations.
Each transformed feature map is upsampled using the same
interpolation u↑i (·) as in (1). The second model (NSE-2)
transforms feature maps into hidden layers and refines them
as the resolution increases, resembling the approach in DC-
GAN [28]. See Appx. C for details of both models.

There are other nonlinear models—for example, one that
concatenates a generative model with a full-fledged semantic
segmentation model (such as UNet [29]). However, such
a model provides no clue about how feature maps encode
image semantics. We therefore choose not to consider them
in our studies.

3.2. Experiment Setup

We conduct experiments on various GANs and datasets
to examine our LSE model. We choose PGGAN [20], Style-
GAN [21], and StyleGAN2 [22] trained on three datasets.
Specifically, we use StyleGAN trained on the facial im-
age dataset CelebAHQ [25], and StyleGAN2 trained on
FFHQ [21] and separately on a bedroom and church dataset
from LSUN [37]. Instead of training those GAN models
from scratch, we use the existing pretrained GANs2.

Training LSE is supervised by pretrained semantic seg-
mentation models. For facial images, we use a UNet trained
on CelebAMask-HQ [24] with manually labeled semantic
masks, and it segments a facial image into 15 semantic re-
gions. For bedroom and church images, we use the publicly

2These pretained GANs are publicly available here.

4

https://github.com/genforce/genforce

available DeepLabV3 [8] trained on ADE20K [42] dataset.
DeepLabV3 predicts 150 classes, most of which are not
present in the GAN’s output images. Thus, we consider a
subset of classes for generated bedroom and church images.
Our choice of the classes is described in Appx. E.

In each experiment, the training data of LSE consists of
51,200 images sampled by a GAN model (i.e., PGGAN,
StyleGAN, or StyleGAN2), and the images are semantically
labeled by a pretrained segmentation model. Meanwhile,
we record the GAN model’s feature maps in each image
generation. The semantic masks together with the feature
maps are then used to train the transformation matrix Ti for
every GAN layer (see Appx. D for more details).

After training, we evaluate our LSE on a separate set of
10,000 generated images. During the generation of each
image, we use LSE (and NSE-1 and NSE-2 for comparison)
on the generator’s feature maps to predict a semantic seg-
mentation, which is in turn compared with the segmentation
labels to compute an IoU score (defined in Appx. A).

3.3. Results

We now present empirical results to back our proposed
linear semantic extraction (1).
Evaluation of LSE. Figure 3 compares qualitatively se-
mantic segmentation of LSE to other methods. The quantita-
tive results in terms of mIoU scores are reported in Table 1,
from which it is evident that our simple LSE is compara-
ble to more complex, nonlinear semantic classifiers. The
relative performance gap between LSE and NSEs (NSE-1
and NSE-2) is within 3.5%. Results on StyleGAN-Bedroom
and StyleGAN-Church have a slightly larger gap (< 8%).
We present additional qualitative results and IoU for each
category in Appx. J.

Takeaway. Our experiments show that LSE is capable
of extracting image semantics from the feature maps of the
GANs. Further, the close performance of LSE to NSEs sug-
gests that a well-trained GAN encodes the image semantics
in its feature maps in a linear way.

Our approach differs from the prior GAN Dissection
work [5], which identifies feature maps correlating with
a specific semantic class. These feature maps are primar-
ily found in middle-level feature maps, resulting in a lower
resolution segmentation than the network output. Also, the
per-pixel semantic classification remains unexplored. In con-
trast, the semantics extracted by LSE are of high resolution
(the same as the output image) and have sharp boundaries.
Geometrical evidence. The geometric interpretation of (1)
indicates that features of a semantic class fall into a convex
surface area on an n-sphere. To verify this intuition, we test
a stronger hypothesis —the features of individual pixels can
be clustered around class centers. If the clusters are well-
formed, we should be able to find a convex hull to identify
individual classes.

Figure 3. Qualitative comparison of LSE, NSE-1 and NSE-2. From
top to bottom, every 3 rows are from GAN models trained on the
same dataset (face, bedroom, church images, respectively). Images
are sampled randomly rather than cherry-picked.

To estimate the class centers, we randomly generate 3000
images using StyleGAN-CelebAHQ, and obtain their seman-
tic masks using UNet. All per-pixel feature vectors from the
same semantic class are collected and normalized onto the
unit n-sphere. The vectors are then averaged and renormal-
ized on the n-sphere. The resulting vector is then treated as a
class center to determine each pixel’s semantic class. Some
segmentation results are shown in Fig. 4, suggesting that this
approach indeed segments images reasonably. The segmenta-
tion error (e.g., in Fig. 4) may be attributed to the inaccurate

5

PGGAN StyleGAN StyleGAN2
Dataset CelebAHQ Bedroom Church CelebAHQ Bedroom Church FFHQ Bedroom Church

LSE 65.5 (-1.6) 33.2 (-3.2) 51.3 (-3.2) 69.1 (-1.9) 39.9 (-7.8) 35.4 (-6.3) 79.7 (-1.7) 53.9 (-3.4) 37.7 (-2.6)
NSE-1 66.5 34.3 53.0 70.5 43.3 37.8 81.0 55.8 38.7
NSE-2 65.9 (-0.9) 30.7 (-10.5) 49.5 (-6.6) 70.1 (-0.5) 38.9 (-10.2) 34.0 (-10.1) 80.2 (-1.1) 52.1 (-6.8) 35.3 (-8.8)

Table 1. The mIoU (%) of LSE, NSE-1, and NSE-2 trained with off-the-shelf semantic segmentation models (UNet for
CelebAHQ and FFHQ, DeepLabV3 for bedroom and church dataset). “Bedroom” and “Church” images are subsets of the
LSUN [37] dataset. The numbers in brakets are the performance difference relative to the best model highlighted in bold.

UNet class centerimage UNet class centerimage

Figure 4. Forging LSE’s parameter T using the statistical centers
of features. Experiment is done on StyleGAN-CelebAHQ.

boundaries between classes, as they are not explicitly trained
to separate different semantic classes. Nevertheless, this ex-
periment confirms our geometric intuition about the feature
maps’ linear embedding of semantics.

We further compute the statistics of cosine similarities of
feature vectors that are within the same semantic class and
that are in different classes. We show that feature vector’s
cosine similarities between pixels within the same class are
indeed higher. Details are reported in Appx. F.

Takeaway. Statistical centers of feature vectors can seg-
ment images reasonably well, suggesting that feature vectors
from different classes are well separated on the n-sphere.
The relatively larger cosine similarities between different
classes also backs our intuition. These are further evidence
indicating linear encoding of image semantics in the feature
maps of GANs.

Few-shot LSEs. Thanks to the linearity of LSE, we can
also train it using a small number of examples. We refer
to this approach as the few-shot LSE. Here, we experiment
the training of LSE with only 1, 4, 8, and 16 annotated
images, respectively. For each few-shot LSE setup, the
training is repeated for five times, and we report the average
performance of the five trained models.

Table 2 reports the quantitative evaluation results. First,
the extreme case, one-shot LSE, already shows plausible
performance, achieving 69.8%, 39.8%, and 52.5% mIoU

N FFHQ Bedroom Church
1 55.6 (69.8) ± 5.2 21.5 (39.8) ± 3.7 19.7 (52.2) ± 3.4
4 64.8 (81.4) ± 1.0 36.5 (67.8) ± 2.7 24.2 (64.3) ± 1.4
8 68.4 (85.8) ± 2.6 38.6 (71.6) ± 2.4 26.3 (69.7) ± 0.8
16 70.2 (88.1) ± 3.0 42.2 (78.3) ± 1.1 27.7 (73.5) ± 0.8
full 79.7% 53.9% 37.7%

Table 2. The evaluation of few-shot LSEs for StyleGAN2. Each
model is trained 5 times. Both the mean and maximum deviation
of the 5 repeats are shown. The numbers in parentheses indicate
the ratio of the mean performance over the fully trained model’s
performance listed in the last row.

scores relative to the fully trained model. The 16-shot LSE
further improves the mIoU scores to 88.1%, 78.3%, and
73.5% relative to the fully trained model.

Takeaway. The few-shot LSEs have already achieved
performance comparable to fully supervised LSEs. Not only
do they enable a low-cost way of extracting semantics from
GANs, the results further support our hypothesis that image
semantics are linearly embedded in feature maps.

4. Applications
In this section, we leverage the simplicity of LSE to con-

trol image semantics of GAN’s generation process.

4.1. Few-shot Semantic Editing

In many cases, the user may want to control a GAN’s
image generation process. For example, they might want to
adjust the hair color of a generated facial image from blond
to red; and the user may draw a red stroke on the hair to
easily specify their intent. Existing approaches, such as color
space editing [44, 7, 2, 43], aim to find a latent vector that
generates an image better matching the user specification.
The latent vector is often found by minimizing a distance
measure between the generated image and the user’s strokes
in color space.

However, without explicit notion of semantics, the mini-
mization process may not respect image semantics, leading
to undesired changes of shapes and textures. For example,
in the 2nd row and 2nd and 3rd columns of Fig. 5, the user
wishes to remove the hair in generated images, but the color
space editing methods tend to just lighten the hair color
rather than removing it.

Leveraging LSE, we propose an approached called Se-
mantic Image Editing (SIE) to enable semantic-aware im-
age generation. We define a semantic edit loss Ls =
L(P (G(z)), Y), where L(·) is the cross-entropy loss, Y
is the target semantic mask, and G is the generator that
takes the latent vector z as input. P is a pretrained seg-
mentation model such as our LSE. Starting from an image’s
latent vector z, we find an output image’s latent vector z′ by
minimizing the loss. The details are presented in Appx. G.

Here, we compare the results of the method using differ-
ent segmentation models, including UNet, our 8-shot LSE,
and fully trained LSE. The qualitative results are shown in
Fig. 5. For each instance, we include both the results of

6

original color stroke edit SIE(UNet) SIE(8-shot LSE) SIE(LSE)semantic stroke

Figure 5. Results of Semantic Image Editing (SIE) on StyleGAN2-FFHQ. Images edited with color strokes are shown in col 2 and 3. Col 4
and 5 show LSE’s original segmentation mask and the user-editied semantic masks. The rest of columns show the results of SIE(UNet),
SIE(8-shot LSE), and SIE(LSE), respectively.

color-space editing and semantic editing, and more results
are presented in Appx. J.

First, SIE(UNet) controls image generation and better
preserves semantics than color-space editing. In comparison
to the results of color-space editing, the undesired changes in
output images are greatly reduced, although SIE(UNet) may
still fail to transform the image’s semantics: for instance,
in the 1st and 2nd row of Fig. 5, SIE(UNet) barely changes
the original image. We speculate that this is because the
gradient from Ls is carried through the entire UNet, making
the optimization process more difficult.

SIE(8-shot LSE) edits the semantics better than
SIE(UNet): it preserves the semantic regions not intended
by the user. However, in 5th and 6th row, SIE(8-shot LSE)
produces lower image quality. We conjecture that this is due
to highly unbalanced data distribution: the semantic classes
“hat” and “eyeglasses” occur sparsely in the training dataset.
As a result, those classes can not be well represented in
the GAN model—leading to the well-known mode collapse
problem. Lastly, SIE(8-shot LSE) has a similar performance
to SIE(LSE), although its LSE is trained with much fewer
annotations.

4.2. Few-shot Conditional Generation

Semantic-Conditional Sampling (SCS) aims to synthe-
size an image subject to a semantic mask. It offers the user
more control over the image generation process. SCS has

been explored [27, 46], but most previous works rely on
large annotated datasets to train their models. Thanks to its
simplicity, our LSE can be trained with a small set of anno-
tated images (recall our few-shot LSE). Here we leverage
it to build a few-shot SCS model. It is the need of only a
few labeled images that differs our method from existing
image-to-image translation methods [18, 45, 46, 27, 35].

Our few-shot SCS finds output latent vector by formu-
lating a minimization problem similar to SIE discussed in
Sec. 4.1. But unlike SIE, which takes the input image’s latent
vector, it needs to choose a proper initial latent vector. The
details of the minimization process are presented in Appx. H.

Qualitative results. Figure 6 shows conditionally sampled
images using 8-shot LSEs. The eight image labels are pro-
duced by a pretained semantic segmentation model: for
facial images, we use UNet; and for bedroom and church
images, we use DeepLabV3.

While the generated images are diverse, they all respect
well the provided semantic targets (first column of Fig. 6).
For facial image generation (1st to 4th row), faces are well
matched to the provided semantic masks. For bedroom
images (5th to 8th row), the location and orientation of beds,
windows, and walls all match well to the target semantic
layout. For church images (9th to 12th row), the church
geometries are mostly matched. For instance, in the first
group of church images, three of the five samples have two
tall towers and one short tower in between. In the second

7

Figure 6. SCS results on StyleGAN2. Every pair of rows are to
compare SCS(8-shot LSE) results (shown in the first row of each
pair) with SCS using a pretrained segmentation model (shown in
the second row of each pair).

group, all the samples have a tall tower on the left side,
matching the provided semantic mask.

The SCS(8-shot LSE) and the baseline SCS(UNet) have
comparable semantic quality in generated images. We no-
tice that in 3rd and 4th rows, SCS(8-shot LSE) appears less
successful than SCS(UNet) to respect the provided semantic
targets. We believe that this is again due to the data imbal-
ance: “hat” and “eyeglasses” occur must less frequently in
the training dataset than other semantic classes.

N Church Bedroom FFHQ
1 16.0 ± 1.4 17.5 ± 2.0 37.2 ± 0.8
4 18.0 ± 1.3 21.6 ± 0.9 39.1 ± 0.5
8 19.6 ± 0.5 21.7 ± 0.8 39.4 ± 0.9

16 20.4 ± 0.6 22.3 ± 0.4 40.0 ± 0.2
baseline 23.1 17.3 34.3

Table 3. The semantic accuracy measures the semantic agreement
between generated images and targets. For SCS with few-shot
LSEs, each model is trained for 5 times with different training
data to account for the training data variance. The numbers before
± sign are the average results of the 5 repeats, and the numbers
following ± indicate the maximum deviations from the average.
Experiments are done on StyleGAN2.

Quantitative results. We compute the semantic accuracy
of SCS, which measures the discrepancy between the seman-
tic target and the segmentation of a generated image. We
present the formal definition of the accuracy in (7) of the
appendix, and report the results in Table 3. On the church
dataset, the SCS(few-shot LSE) performs slightly worse than
SCS(UNet), while on the bedroom and face datasets, our
method with 8-shot (and 16-shot) LSE is even better than
SCS(UNet).

5. Conclusions

In this work, we study how the image semantics are em-
bedded in GAN’s feature maps. We propose a Linear Se-
mantic Extractor (LSE) to extract image semantics modeled
by GANs. Experiments on various GANs show that LSE
can indeed reveal the semantics from feature maps. We also
study the class centers and cosine similarities between differ-
ent classes to provide geometric interpretation of our LSE.
Therefore, it is well-backed that GANs use a linear notion
to encode semantics. Then, we successfully train LSEs in
few-shot settings. Using only 16 training annotations, we ob-
tain 73.5%, 78.3%, and 88.1% performance relative to fully
supervised LSEs on the church, bedroom, and face images.
Finally, we build two novel applications based on few-shot
LSEs: the few-shot Semantic-Conditional Sampling and the
few-shot Semantic Image Editing. Our methods can match
or surpass the baselines using fully supervised segmenta-
tion networks. Using the proposed methods, users can exert
precise and diverse spatial semantic controllability over pre-
trained GAN models with only a few annotations.

Acknowledgements. This work was supported in part
by the National Science Foundation (1910839, 1717178,
1816041). Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation or others.

8

References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan++: How to edit the embedded images? CoRR,
abs/1911.11544, 2019. 2

[2] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-
age2stylegan++: How to edit the embedded images? 2019.
6

[3] Rameen Abdal, Peihao Zhu, Niloy Mitra, and Peter Wonka.
StyleFlow: Attribute-conditioned Exploration of StyleGAN-
Generated Images using Conditional Continuous Normalizing
Flows. arXiv e-prints, page arXiv:2008.02401, Aug. 2020. 2

[4] David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and
Antonio Torralba. Rewriting a deep generative model. In
Proceedings of the European Conference on Computer Vision
(ECCV), 2020. 2

[5] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou,
Joshua B Tenenbaum, William T Freeman, and Antonio Tor-
ralba. Gan dissection: Visualizing and understanding genera-
tive adversarial networks. arXiv preprint arXiv:1811.10597,
2018. 1, 2, 5

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 2

[7] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Neural
photo editing with introspective adversarial networks. ArXiv,
abs/1609.07093, 2017. 2, 6

[8] Liang Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation. 2017. 3, 5, 1

[9] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya
Sutskever, and Pieter Abbeel. InfoGAN: Interpretable Rep-
resentation Learning by Information Maximizing Generative
Adversarial Nets. arXiv e-prints, page arXiv:1606.03657,
June 2016. 2

[10] Edo Collins, Radhakrishna Achanta, and Sabine Susstrunk.
Deep feature factorization for concept discovery. In The
European Conference on Computer Vision (ECCV), 2018. 2

[11] Edo Collins, Raja Bala, Bob Price, and Sabine Süsstrunk.
Editing in style: Uncovering the local semantics of GANs. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 2

[12] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep
generative image models using a laplacian pyramid of adver-
sarial networks. In Advances in neural information processing
systems, pages 1486–1494, 2015. 1

[13] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier
Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron
Courville. Adversarially learned inference. arXiv preprint
arXiv:1606.00704, 2016. 2

[14] Partha Ghosh, Pravir Singh Gupta, Roy Uziel, Anurag Ran-
jan, Michael Black, and Timo Bolkart. Gif: Generative inter-
pretable faces, 2020. 2

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014. 1, 2

[16] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. 2017. 2

[17] Xun Huang, Yixuan Li, Omid Poursaeed, John Hopcroft, and
Serge Belongie. Stacked generative adversarial networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5077–5086, 2017. 1

[18] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. In 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 5967–5976, 2017. 2, 7

[19] Ali Jahanian, Lucy Chai, and Phillip Isola. On
the”steerability” of generative adversarial networks. arXiv
preprint arXiv:1907.07171, 2019. 2

[20] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017. 1, 2, 4

[21] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4401–4410, 2019. 1, 2, 4, 6

[22] Tero Karras, Samuli Laine, Miika Aittala, Janne Hell-
sten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of stylegan. arXiv preprint
arXiv:1912.04958, 2019. 1, 2, 4

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1, 2

[24] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo.
Maskgan: towards diverse and interactive facial image ma-
nipulation. arXiv preprint arXiv:1907.11922, 2019. 4, 1,
6

[25] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), De-
cember 2015. 1, 4

[26] Augustus Odena, Christopher Olah, and Jonathon Shlens.
Conditional Image Synthesis With Auxiliary Classifier GANs.
arXiv e-prints, page arXiv:1610.09585, Oct. 2016. 2

[27] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Gaugan: semantic image synthesis with spatially adap-
tive normalization. In ACM SIGGRAPH 2019 Real-Time
Live!, pages 1–1. 2019. 2, 7

[28] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional genera-
tive adversarial networks. arXiv preprint arXiv:1511.06434,
2015. 1, 2, 4

[29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer,
2015. 1, 3, 4

[30] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. In-
terpreting the latent space of gans for semantic face editing.
arXiv preprint arXiv:1907.10786, 2019. 2

[31] Yujun Shen and Bolei Zhou. Closed-form factorization of
latent semantics in gans. 2020. 2

9

[32] Ryohei Suzuki, Masanori Koyama, Takeru Miyato, Taizan
Yonetsuji, and Huachun Zhu. Spatially Controllable Image
Synthesis with Internal Representation Collaging. arXiv e-
prints, page arXiv:1811.10153, Nov. 2018. 2

[33] Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian
Bernard, Hans-Peter Seidel, Patrick Pérez, Michael Zollhöfer,
and Christian Theobalt. Stylerig: Rigging stylegan for 3d
control over portrait images, 2020. 2

[34] Andrey Voynov and Artem Babenko. Unsupervised discovery
of interpretable directions in the gan latent space. arXiv
preprint arXiv:2002.03754, 2020. 2

[35] Ting Chun Wang, Ming Yu Liu, Jun Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image
synthesis and semantic manipulation with conditional gans.
2017. 2, 7

[36] Ceyuan Yang, Yujun Shen, and Bolei Zhou. Semantic hier-
archy emerges in deep generative representations for scene
synthesis. arXiv preprint arXiv:1911.09267, 2019. 2

[37] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas
Funkhouser, and Jianxiong Xiao. Lsun: Construction of a
large-scale image dataset using deep learning with humans in
the loop. arXiv preprint arXiv:1506.03365, 2015. 1, 4, 6

[38] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus
Odena. Self-attention generative adversarial networks. arXiv
preprint arXiv:1805.08318, 2018. 2

[39] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi
Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Mueller, and
R and Manmatha. Resnest: Split-attention networks. 2020. 3,
2

[40] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
gan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 5907–
5915, 2017. 2

[41] Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao, Yinan
Zhang, Antonio Torralba, and Sanja Fidler. Image gans meet
differentiable rendering for inverse graphics and interpretable
3d neural rendering, 2020. 2

[42] Bolei Zhou, Hang Zhao, Francesco Xavier Puig Fernandez,
Sanja Fidler, and Antonio Torralba. Scene parsing through
ade20k dataset. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 5, 2

[43] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-
domain gan inversion for real image editing. 2020. 6

[44] Jun Yan Zhu, Philipp Krhenbühl, Eli Shechtman, and
Alexei A. Efros. Generative visual manipulation on the natu-
ral image manifold. 2016. 2, 6

[45] Jun Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. 2017. 2, 7

[46] Peihao Zhu, Rameen Abdal, Yipeng Qin, and Peter Wonka.
Sean: Image synthesis with semantic region-adaptive normal-
ization. 2019. 2, 7

10

Supplementary Document

Linear Semantics in Generative Adversarial Networks

A. Definition of IoU.
Intersection-over-Union (IoU) is a widely used metric

in semantic segmentation literature. A segmentation of a
category is represented as a set of pixels among all pixels that
belong to this category. Suppose we have a segmentation A
and B, their IoU is IoU(A,B) = |A∩B|

|A∪B| . Taking the average
across a set of segmentations A = {Ai} and B = {Bi}, we
get the average IoU on this dataset:

IoU(A,B) =
1

N

∑
Ai∪Bi 6=∅

IoU(Ai, Bi) (4)

IoU evaluates how well the segmentation is for a par-
ticular category. Mean IoU (mIoU) evaluates the overall
performance of multi-class segmentation. It is calculated as
the mean of IoUs over all categories.

B. Proof of commutative property
Now we are going to prove that u↑(Ti ·xi) = Ti ·u↑(xi).
Suppose that a pixel p that we want to interpolate lies

in the rectangle of four pixels (x11, x12, x21, x22) and its
relative position is described by (α, β) as distance ratio to
the edges of the rectangle. The interpolated value is

u↑p(x11, x12, x21, x22, α, β)

=(1− β)[(1− α)x11 + αx12]

+ β[(1− α)x21 + αx22]

(5)

When we do convolution then upsample, we get the fol-
lowing result

u↑p(Tix11,Tix12,Tix21,Tix22, α, β)

=(1− β)[(1− α)Tix11 + αTix12]

+ β[(1− α)Tix21 + αTix22]

=Ti(1− β)[(1− α)x11 + αx12]

+ Tiβ[(1− α)x21 + αx22]

=Tiu
↑
p(x11, x12, x21, x22, α, β)

(6)

which is exactly upsampling then convoluting.

C. Nonlinear semantic extractors
The architectures of NSEs are shown in Fig. 7. NSE-1

is a direction generalization from LSE. Instead of extracting

𝑥!"#

𝚺

𝑥#
𝑥$ …

𝑆

(a) NSE-1

2x …𝚺 𝚺

𝑥!
𝑥" …

2x

𝑆

𝑥#$!

(b) NSE-2
Figure 7. The architecture of NSEs. The thick blue arrow refers to
3× 3 convolution with stride 1. “2x” refers to nearest upsampling
with factor 2.

semantics from each layer linearly, NSE-1 extract semantics
with 3 nonlinear convolution layers from each layer. The
results from each layer are upsampled and summed up the
same as LSE. The architecture of NSE-2 is inspired by DC-
GAN, where the resolution gradually increases. The output
from the last layer of NSE-2 is upsampled and summed with
embedding extracted from GAN’s feature maps.

D. Experiment details
Pretrained networks For segmentation on facial images,
we train a UNet [29] on CelebAMask-HQ [24] dataset to per-
form semantic segmentation. The training script is adapted
from the project repo 3 of MaskGAN [24]. Our UNet follows
standard UNet architecture and takes 512× 512 images as
input. It is trained using Adam optimizer [23] for 40 epochs
(about 76k iterations), with learning rate 3×10−4, β1 = 0.9,
β2 = 0.999 and batch size 16.

The CelebAMask-HQ dataset contains 30k human-
labeled face-segmentation pairs. The face images are aligned
to the center and have 1024×1024 resolution. The semantic
labeling’s resolution is 512× 512, consisting of 19 semantic
categories. However, there are duplicate semantic concepts
like “right ear” and “left ear”, “right eye” and “left eye”,
“right brow” and “left brow”. In those pairs, as both cat-
egories differ only in spatial location, we unify them into
“ear”, “eye”, and “brow”. Besides, only 50 instances are la-
beled with “necklace”, thus we remove it by merging “neck-
lace” into “neck”. As a result, we get 15 semantic categories
listed in category results Table 6.

For segmentation on GANs trained on LSUN’s bed-
room and church datasets, we use the DeepLabV3 [8] with

3https://github.com/switchablenorms/CelebAMask-HQ

1

0 10 20 30 40 50

0.50

0.55

0.60

0.65

0.70

0.75
PGGAN-CelebAHQ

LSE
NSE-1
NSE-2

0 10 20 30 40 50
0.65

0.70

0.75

0.80

StyleGAN-CelebAHQ

LSE
NSE-1
NSE-2

0 10 20 30 40 50

0.75

0.80

0.85

0.90
StyleGAN2-FFHQ

LSE
NSE-1
NSE-2

0 10 20 30 40 50
0.25

0.30

0.35

0.40

PGGAN-Bedroom

LSE
NSE-1
NSE-2

0 10 20 30 40 50

0.40

0.45

0.50

0.55

StyleGAN-Bedroom

LSE
NSE-1
NSE-2

0 10 20 30 40 50

0.55

0.60

0.65

StyleGAN2-Bedroom

LSE
NSE-1
NSE-2

0 10 20 30 40 50
0.45

0.50

0.55

0.60

0.65
PGGAN-Church

LSE
NSE-1
NSE-2

0 10 20 30 40 50

0.40

0.45

0.50

StyleGAN-Church

LSE
NSE-1
NSE-2

0 10 20 30 40 50

0.425

0.450

0.475

0.500

0.525
StyleGAN2-Church

LSE
NSE-1
NSE-2

Figure 8. Training evolution of mIoU of all the semantic extractors on GANs.

ResNeSt [39] backbone trained on ADE20k dataset [42].
Model parameters are obtained from here4. However, the
DeepLabV3 predicts in total 150 categories, where most are
not present in generated images, because GANs are train on
LSUN datasets rather than the ADE20k dataset. We apply a
category selection process (detailed in Appx. E) to remove
irrelevant semantic categories.

All the pretrained GAN models are adapted from Gen-
Force5. The image resolution of GANs trained on face
datasets are 1024× 1024, and the rest are 256× 256.

Training For fully supervised training, we sample 51,200
images from the GAN and record their feature maps. These
images are then semantically segmented with an off-the-
shelf segmenter in the corresponding data domain. The
semantic masks and feature maps are then used to train
the transformation matrix Ti for every GAN layer. To be
specific, the total matrix T (defined in (2)) for StyleGAN2-
FFHQ are of size 15× 5568. For StyleGAN2-Bedroom, T
is shaped as 16× 5376.

Ti are optimized with Adam [23] with β1 = 0.9, β2 =
0.999 and initial learning rate 10−3. The training takes 50
epochs in total, where each epoch consists of 1,024 samples.
The learning rate is reduced with a factor of 10 at epoch 20.

4https://github.com/zhanghang1989/PyTorch-Encoding
5https://github.com/genforce/genforce

For the first two epochs, the batch size is 1. For the next 16
epochs (3 to 19), the batch size is set to 4. For epoch 20 to
50, the batch size is 64. The total optimization iterations are
1024× 2 + 1024

4 × 16 + 1024
64 × 32 = 6, 656. LSE, NSE-1,

and NSE-2 are trained in the same settings.
We record the mIoU of training samples, and show the

evolution of training mIoU in Fig. 8. All the semantic ex-
tractors converge during the training.

For the few-shot training of LSEs, we also sample the
latent space and segment the images. The difference is that
only a few annotations are made available to the LSE. We
experimented with 1, 4, 8, 16 samples. The resultant models
are named as the one-shot, 4-shot, 8-shot and 16-shot LSEs,
respectively. For the one-shot LSE, the training takes 2000
iterations with batch size 1. For 4, 8, and 16 samples, the
training uses batch sizes 4, 8, and 16 and iteration numbers
2000, 1000, and 500, respectively. For PGGAN, each batch
is exactly the same. For StyleGAN and StyleGAN2, the
layer noises are re-sampled in each batch. The optimizer
setting is the same as in full supervision.

Evaluation Conventionally, semantic segmentation meth-
ods are evaluated on real image-segmentation datasets. How-
ever, our semantic extractors cannot take real images as
input. One may invert real images in GAN’s representation,
but the inversion is another challenging problem, thus we

2

Generator PGGAN StyleGAN StyleGAN2
Dataset Bedroom Church Bedroom Church Bedroom Church

LSE 32.4 (-4.8) 49.4 (-2.4) 39.8 (-8.0) 34.8 (-7.0) 54.3 (-4.2) 36.8 (-3.7)
NSE-1 34.1 50.6 43.2 37.4 56.6 38.2
NSE-2 28.9 (-15.1) 45.1 (-10.8) 39.5 (-8.7) 33.3 (-11.0) 51.9 (-8.4) 34.5 (-9.8)

Results adaped from Table 1.
LSE 33.2 (-3.2) 51.3 (-3.2) 39.9 (-7.8) 35.4 (-6.3) 53.9 (-3.4) 37.7 (-2.6)

NSE-1 34.3 53.0 43.3 37.8 55.8 38.7
NSE-2 30.7 (-10.5) 49.5 (-6.6) 38.9 (-10.2) 34.0 (-10.1) 52.1 (-6.8) 35.3 (-8.8)

Table 4. The evaluation of LSE, NSE-1, and NSE-2 trained on the full list of ADE20K 150 classes. The mIoU(%) is calculated on the final
selected categories, which is the same as the the categories used in the paper. The results of models re-trained on the selected categories are
also shown in the last three rows for reference.

do not consider this approach. As a result, the evaluation
cannot be conducted on the common annotated dataset. Ide-
ally, we should annotate synthetic images manually, but the
cost would then be prohibitive. Therefore, we choose to
use the prediction from the off-the-shelf segmenter as the
ground-truth for evaluation.

We sample and segment another 10,000 images different
from those used in training. Every time GAN generates an
image, we apply the semantic extractor to the generator’s
feature maps to predict a semantic mask. The segmentation
is compared with the pretrained segmenter’s prediction to
compute the IoU.

As some datasets (e.g., LSUN’s bedroom dataset) may
be more difficult to segment than some others (e.g., the
CelebAHQ dataset), we compute relative performance dif-
ferences between semantic extractors. Concretely, for each
GAN model, there are three semantic extractors to be eval-
uated, which are LSE, NSE-1, and NSE-2. Denoting their
mIoUs with the pretrained segmenter as yi, and the high-
est mIoU among the three as y∗, the relative performance
difference of each semantic extractor is defined as yi−y∗

y∗ .

E. Category selection

For GANs trained on bedroom and church images, we rely
on DeepLabV3 trained on ADE20K to provide the training
supervision. In this section, we aim to remove categories
that are not generated by GANs.

First of all, we train and evaluate semantic extractors on
the full set of 150 classes. Then, we remove all the categories
that are predicted with mIoU < 10% by all the semantic
extractors. In other words, a category will be selected as
long as any of the LSE, NSE-1, and NSE-2 predicts it with
mIoU > 10%. In this way, the list of selected categories
for each GAN model are decided. The formal results are
obtained by training and evaluating on the selected categories
under the same settings.

The evaluation of LSE, NSE-1, and NSE-2 trained on
full categories is shown in Table 4. Generally, the re-trained
semantic extractors obtain slightly better performance, which

is expected. We also show the IoU for each category in
Table 5, where the table headers also list the final selected
categories for each GAN model.

F. Cosine similarity of categories
As mentioned in Sec. 3.1, the linear formulation indicates

that the features of a particular category can be bounded by a
hyper-cone. To verify this geometric intuition, we propose to
test a stronger hypothesis: the features of different categories
are well-separated. In other words, the distances of features
within a category are closer than those between different
categories. Our approach is to sample features for each
category fairly, and compute the cosine distances between
features.

First of all, we need to ensure the fairness of compari-
son for each category. For this purpose, we propose a fair
sampling algorithm (Algorithm 1) which repeatedly samples
images and record features fairly until enough features are
collected. In every image, if the feature number of a cate-
gory is larger than a threshold T1, then T1 feature vectors
from that category are chosen randomly without replace-
ment (denoted by choice(a,N)). The chosen vectors would
be accumulated to a category feature pool until the feature

Algorithm 1: Fair feature sampling algorithm.
Input: G; P ; T1; T2
Output: {fk}
for k = 1, 2, . . . ,M do

fk = ∅
while ∃k, |fk| < T2 do

z ∼ N (0, I)
I, F = G(z) // F denotes features
S = P (I)
for k = 1, 2, . . . ,M do

if |fk| < T2 and |{p|Sp = k}| ≥ T1 then
R = choice({p|Sp = k}, T1)
fk = fk ∪ {Fp|p ∈ R}

3

wall floor ceiling bed win. table curtain painting lamp cushion pillow flower light chdr. fan clock
LSE 91.29 85.56 88.47 90.53 75.58 67.19 43.13 68.79 59.43 32.29 46.05 12.98 36.73 18.06 37.79 14.77

NSE-1 92.13 87.06 89.79 91.99 76.40 69.98 46.14 73.71 62.70 34.21 48.10 15.76 40.04 20.34 45.62 12.39
NSE-2 91.56 86.22 88.78 91.15 72.94 67.52 42.77 69.43 58.61 30.87 46.20 4.76 26.75 12.51 35.14 5.39
LSE 91.29 85.95 88.27 90.94 76.23 67.31 42.08 69.29 59.28 31.17 45.57 11.77 36.17 18.07 35.72 13.62

NSE-1 92.21 87.12 89.05 91.80 76.37 69.62 45.74 71.69 62.34 33.22 47.98 12.40 39.10 18.57 43.28 12.74
NSE-2 91.66 86.31 88.65 91.21 74.79 68.85 43.66 70.70 60.51 26.36 45.34 4.01 31.83 11.22 30.61 7.13

(a) StyleGAN2-Bedroom

wall floor ceiling bed win. table curtain chair painting rug wdrb. lamp cushion chest pillow flower light chdr. fan
LSE 82.30 74.12 73.79 88.28 55.34 47.58 37.13 9.10 64.01 8.93 11.07 42.91 33.42 19.09 46.51 9.02 11.45 22.70 18.55

NSE-1 83.78 75.50 76.55 89.40 57.24 50.63 40.96 10.52 67.41 11.54 12.31 48.90 36.62 18.66 49.07 10.67 25.08 26.49 29.66
NSE-2 83.05 74.61 75.44 89.34 53.99 47.98 39.63 6.03 64.04 5.11 8.78 45.89 35.95 17.45 48.88 3.02 12.32 16.52 21.49
LSE 83.12 74.70 73.90 88.82 56.80 45.78 37.19 10.24 62.87 9.35 10.81 42.43 33.26 20.91 46.19 7.17 11.01 25.37 18.18

NSE-1 84.37 75.01 76.30 89.90 58.27 49.78 39.98 11.95 66.87 12.77 12.04 49.36 35.88 22.91 48.95 10.32 24.10 25.93 27.83
NSE-2 83.81 74.19 75.38 89.64 55.27 47.43 40.03 11.23 63.60 6.76 9.27 46.61 34.22 15.45 47.84 0.66 8.92 14.58 13.85

(b) StyleGAN-Bedroom

wall floor ceiling bed windowpane table curtain painting lamp pillow light chandelier fan
LSE 69.46 45.07 54.05 68.39 36.38 12.58 25.77 32.67 17.18 16.10 13.65 12.14 18.06

NSE-1 70.75 46.78 57.01 70.35 38.84 14.78 29.07 35.66 18.35 18.86 15.42 9.49 17.36
NSE-2 68.60 45.19 54.56 68.12 33.03 12.06 27.67 34.59 15.31 16.79 0.11 0.00 0.00
LSE 71.91 47.88 54.53 70.29 37.06 11.71 25.39 33.74 16.82 17.90 15.57 10.83 17.94

NSE-1 72.91 49.01 56.42 71.69 38.90 14.35 28.34 35.39 18.21 19.31 13.58 10.45 17.08
NSE-2 72.11 47.90 54.72 71.41 38.46 13.14 27.77 35.41 16.83 18.65 0.00 1.22 1.30

(c) PGGAN-Bedroom

building sky tree road grass sidewalk person earth plant car stairs
LSE 85.94 97.52 76.51 24.19 40.16 16.71 15.78 13.72 8.92 12.22 13.43

NSE-1 86.93 97.87 78.59 25.76 44.45 17.73 17.03 14.04 10.62 13.30 14.39
NSE-2 86.65 97.71 77.96 22.16 37.87 10.78 12.92 8.87 7.52 8.21 8.91
LSE 87.96 97.46 76.31 27.32 41.61 17.08 17.62 14.21 8.28 12.84 14.23

NSE-1 88.75 97.70 78.16 27.14 44.96 18.82 16.76 15.92 9.99 12.68 15.26
NSE-2 88.77 97.69 77.66 22.33 39.78 13.38 12.52 10.80 6.31 8.58 10.81

(d) StyleGAN2-Church

building sky tree road grass sidewalk person plant signboard path
LSE 88.18 95.53 49.14 23.29 39.34 11.07 9.42 9.32 14.11 8.52

NSE-1 88.55 95.69 54.25 25.06 42.24 11.05 11.61 12.55 22.53 10.40
NSE-2 87.74 95.34 48.18 19.77 34.36 7.79 10.11 8.51 14.37 6.63
LSE 91.30 95.53 47.46 25.30 41.63 13.08 8.39 9.17 13.80 8.84

NSE-1 92.01 96.01 53.01 28.06 44.84 13.33 11.56 12.25 16.62 10.63
NSE-2 91.58 95.66 49.60 22.96 35.72 7.95 9.47 9.12 12.69 5.40

(e) StyleGAN-Church

building sky tree road grass signboard
LSE 83.98 91.21 45.55 17.01 30.14 28.51

NSE-1 84.60 91.46 47.92 18.79 31.17 29.71
NSE-2 83.79 90.91 42.99 15.19 23.64 14.35
LSE 88.17 91.33 44.57 29.10 34.05 20.78

NSE-1 88.98 92.02 47.18 31.43 36.08 22.37
NSE-2 88.35 91.75 44.85 25.91 30.31 16.00

(f) PGGAN-Church
Table 5. The IoU (%) of each category for LSE, NSE-1, and NSE-2. In every subtable, the first three rows show the results of models trained
with full classes during the category selection process. The last three rows of each subtable show the results of the models used in Table 1,
which are obtained by re-training on the selected classes. The abbreviation “win.”, “wdrb.”, “chdr.” stands for “windowpane”, “wardrobe”,
and “chandelier”, respectively.

4

bg ski
n

no
se

ey
e_g ey

e
bro

w ea
r
mou

th
u_l

ip l_li
p

ha
ir ha

t
ea

r_r ne
ck

clo
th

bg

skin

nose

eye_g

eye

brow

ear

mouth

u_lip

l_lip

hair

hat

ear_r

neck

cloth

0.46 0.06 0.05 0.03 0.07 0.01 0.04 0.03 0.04 0.02 0.19 0.15 0.04 0.03 0.10

0.06 0.43 0.10 0.06 -0.01 0.10 0.11 -0.00 0.03 0.03 0.08 0.05 0.06 0.10 0.06

0.05 0.10 0.65 0.07 0.04 0.12 0.07 0.09 0.15 0.09 0.01 0.00 0.02 0.06 0.02

0.03 0.06 0.07 0.21 0.14 0.18 0.07 0.11 0.10 0.11 0.09 0.07 0.07 0.11 0.07

0.07 -0.01 0.04 0.14 0.72 0.12 0.03 0.30 0.17 0.23 0.11 0.07 0.04 0.02 0.04

0.01 0.10 0.12 0.18 0.12 0.48 0.07 0.09 0.11 0.11 0.04 0.03 0.07 0.13 0.05

0.04 0.11 0.07 0.07 0.03 0.07 0.30 0.05 0.05 0.07 0.10 0.08 0.15 0.11 0.10

0.03 -0.00 0.09 0.11 0.30 0.09 0.05 0.58 0.47 0.45 0.05 0.04 0.02 0.03 0.02

0.04 0.03 0.15 0.10 0.17 0.11 0.05 0.47 0.59 0.38 0.05 0.02 0.02 0.04 0.01

0.02 0.03 0.09 0.11 0.23 0.11 0.07 0.45 0.38 0.48 0.04 0.02 0.03 0.08 0.03

0.19 0.08 0.01 0.09 0.11 0.04 0.10 0.05 0.05 0.04 0.45 0.20 0.08 0.07 0.11

0.15 0.05 0.00 0.07 0.07 0.03 0.08 0.04 0.02 0.02 0.20 0.16 0.07 0.07 0.11

0.04 0.06 0.02 0.07 0.04 0.07 0.15 0.02 0.02 0.03 0.08 0.07 0.23 0.14 0.10

0.03 0.10 0.06 0.11 0.02 0.13 0.11 0.03 0.04 0.08 0.07 0.07 0.14 0.31 0.16

0.10 0.06 0.02 0.07 0.04 0.05 0.10 0.02 0.01 0.03 0.11 0.11 0.10 0.16 0.17

(a) StyleGAN-CelebAHQ

bg ski
n

no
se

ey
e_g ey

e
bro

w ea
r
mou

th
u_l

ip l_li
p

ha
ir ha

t
ea

r_r ne
ck

clo
th

bg

skin

nose

eye_g

eye

brow

ear

mouth

u_lip

l_lip

hair

hat

ear_r

neck

cloth

0.78 0.08 0.03 0.03 -0.00 0.04 0.14 -0.00 0.01 0.01 0.39 0.35 0.08 0.09 0.20

0.08 0.66 0.24 0.13 0.11 0.30 0.18 0.12 0.16 0.17 0.20 0.08 0.13 0.16 0.07

0.03 0.24 0.78 0.28 0.28 0.40 0.12 0.23 0.30 0.25 0.05 0.03 0.12 0.17 0.06

0.03 0.13 0.28 0.67 0.46 0.41 0.10 0.25 0.28 0.23 0.06 0.02 0.12 0.12 0.05

-0.00 0.11 0.28 0.46 0.81 0.31 0.10 0.30 0.26 0.27 0.05 0.03 0.10 0.11 0.06

0.04 0.30 0.40 0.41 0.31 0.74 0.14 0.21 0.30 0.23 0.08 0.03 0.12 0.18 0.06

0.14 0.18 0.12 0.10 0.10 0.14 0.46 0.10 0.12 0.13 0.20 0.14 0.29 0.22 0.18

-0.00 0.12 0.23 0.25 0.30 0.21 0.10 0.73 0.64 0.60 0.04 0.02 0.12 0.15 0.07

0.01 0.16 0.30 0.28 0.26 0.30 0.12 0.64 0.78 0.54 0.04 0.02 0.13 0.16 0.06

0.01 0.17 0.25 0.23 0.27 0.23 0.13 0.60 0.54 0.68 0.04 0.03 0.14 0.20 0.10

0.39 0.20 0.05 0.06 0.05 0.08 0.20 0.04 0.04 0.04 0.65 0.29 0.13 0.11 0.18

0.35 0.08 0.03 0.02 0.03 0.03 0.14 0.02 0.02 0.03 0.29 0.31 0.10 0.10 0.22

0.08 0.13 0.12 0.12 0.10 0.12 0.29 0.12 0.13 0.14 0.13 0.10 0.56 0.30 0.20

0.09 0.16 0.17 0.12 0.11 0.18 0.22 0.15 0.16 0.20 0.11 0.10 0.30 0.53 0.31

0.20 0.07 0.06 0.05 0.06 0.06 0.18 0.07 0.06 0.10 0.18 0.22 0.20 0.31 0.43

(b) StyleGAN2-FFHQ
Figure 9. The cosine similarity between categories. The features
for each category are collected using Algorithm 1.

Algorithm 2: Image editing algorithm.
Input: G; L; Lreg; N
Output: latent code z
for i = 1, . . . , N do

zi ← zi−1 + optimizer(L(zi−1) + Lreg(zi−1))
z ← zN

number reach T2. The algorithm would terminate when all
the category feature pools have collected T2 features. The
fair sampling algorithm gauruantees that each category fea-
ture pool consists of T1 randomly chosen vectors from T2

T1

randomly sampled images. As the sampling procedure is
identical for each category, the sampled features are fair
for each category. In practice, we choose T1 = 200 and
T2 = 4000.

Second, we calculate the cosine similarity between cat-
egories using the fairly sampled features. Specifically, we
first calculate the pairwise cosine similarity between feature
vectors of two pools, resulting in a T2×T2 confusion matrix.
The two pools can belong to different categories (inter-class)
or the same category (intra-class). The cosine similarity
cos(A,B) between A and B is defined as the mean of the
entire matrix.

We show results of StyleGAN-CelebAHQ and
StyleGAN2-FFHQ in Fig. 9. Most diagonal elements of
the confusion matrix have higher cosine similarity than
other elements in a row. It is indicated that the features
in a category are indeed more similar to one another than
features between different categories.

G. Details of Semantic Image Editing

Algorithm. A general image editing algorithm is shown in
Algorithm 2, whose inputs are the generator G, the edit loss
L, the optional regularization loss Lreg, and total iteration
number N .

For color space editing, the editing loss will be the color
editing loss Lc, defined as Lc = 1

||M ||22
||M � (G(zi) −

C)||22, where C is the color stroke, M is the mask of the
modified region. For semantic image editing, the editing loss
will be the semantic editing loss Ls as defined in Sec. 4.1.
The regularization loss is composed by items including the
color preservation loss Lp =

||(1−M)�(G(zi)−G(z0))||22
||1−M ||22

, the
neighbor regularization loss Ln = ||zi − z0||22, and the prior
regularization loss Lz = ||zi||22. zi denotes the latent vector
for the i-th iteration and z0 denotes the initial latent vector.

For color space editing, its total loss is L = Ls +
10−3Ln + 10−3Lz . For SIE, the total loss is L = Lc +
Lp + 10−3Ln + 10−3Lz . We use Adam as the optimizer
with default parameters. The optimization repeats for 50
iterations with a learning rate fixed to be 0.01.

5

Usage. In practice, our image editing application works in
two steps: The first step is to annotate 1 to 8 images sampled
from GAN. The backend of the application will then train a
few-shot LSE using the annotations. The second step is to
edit any sampled images. The editing interface will provide
the semantic mask extracted by the few-shot LSE along with
the image. When the user wants to edit an image, he draws
some strokes on the semantic mask to form a target mask.
Then, the backend would run the SIE algorithm and return
an image that is closer to the target.

H. Semantic-Conditional Sampling.

Algorithm. To sample an image matching the given mask,
we first try to find a good initialization. We randomly sample
ninit latent codes and select the initialization to be the one
closest to the target mask. Next, we iteratively optimize the
latent code to match the target mask using the cross-entropy
loss defined in (3.1). The semantic masks can be predicted
using either a pretrained segmenter or a few-shot LSE.

The SCS algorithm is defined formally in Algorithm 3.
Its inputs are the current latent code z, the target semantic
segmentation Y , the generator G, the semantic predictor P ,
the initialization number ninit, and the iteration number N .
Its output will be image samples that respect the given mask
Y .

In practice, we use ninit = 10 for SCS on face images.
ninit = 100 is used for bedroom and church images, as
they are much more diverse than faces. The optimization
is repeated for 50 iterations. The optimizer is Adam with
default hyperparameters (lr=10−3, β1 = 0.9, β2 = 0.999).
These settings are manually selected without tuning.

For SCS on facial images, the target masks are selected
randomly from the annotations in the CelebAMask-HQ [24]
dataset. For bedroom and church, the masks are predicted
from images sampled from truncated latent space, which
has better image quality than the full latent space [21]. The
truncated latent space W− is obtained by truncating the
latent vectors ofW within a distance of the statistical center.

Algorithm 3: Semantic-Conditional Sampling algo-
rithm.

Input: G; P ; Y ; ninit; N
Output: latent code z
z̄i ∼ N(0, I), i = 1, . . . , ninit
Si = P (G(z̄i))
Pi = |{p|Si,p = Yp}|
z0 = z̄α, α = argminiPi
for i = 1, . . . , N do

L = L(P (G(zi−1)), Y)
zi = optimizer(L, zi−1)

z ← zN

Evalution. Our proposed method plugs in a few-shot LSE
for P , while the baseline uses a pretrained segmentation
network as P . To evaluate the performance of SCS models,
we again rely on a pretrained segmentation network, P ∗.
In this work, the pretrained network used by the baseline
is exactly the same as the one used in evaluation. This is
slightly biased toward the baseline, yet our method is still
able to match or surpass the baseline.

Formally, let the set of targets be Y . The images sampled
by a SCS model given a target Yi are denoted as a set Ii. The
semantic agreement A of sampled images can be measured
by the mean IoU between the predicted segmentation masks
and the target mask:

A(I,Y;P ∗) =
∑

1≤i≤|Y|
1≤j≤|Ii|

1

|Ii||Y|
mIoU(Yi, P

∗(Ii,j)) (7)

In practice, we select 100 target masks and conditionally
sample 10 images for each target, i.e., |Y| = 100 and |Ii| =
10. As a result, we obtain 1,000 images for the evaluation
of each setting of SCS. To account for the variance of few-
shot LSEs, we repeat the training for each model 5 times, as
mentioned in Sec. 3.3.

I. Layerwise analysis
During this work, we examined layer-wise semantics,

which refers to the semantics extracted from each layers
alone. As the original training objective (3.1) only optimizes
the summation from all layers, the semantics from each layer
may not be a good segmentation individually. To extract the
layer-wise semantics better, we add a cross-entropy loss term
on each layer. Theoretically, the best possible layer-wise
semantics should be obtained by training only on that layer.
However, the computational cost would then be prohibitive.
Thus, we choose to optimize all layer losses together.

To put it more formally, we denote the output of LSE
on layer i to be Si = Ti · xi (the final segmentation is
S =

∑N−1
i=1 u↑i (Si)). The training objective becomes

Ll = L(S, Y) +

N−1∑
i=1

αiL(u↑i (Si), Y), (8)

where Y is the segmentation label, L is the standard
cross-entropy loss, and αi is the coefficient for each layer. In
practice, we set αi = 0.1. The training procedure is exactly
the same.

The visualizations of layer-wise semantics are shown in
Fig. 10. Our main discoveries are twofold: (1) the semantic
layout in each layer becomes refined as the network layer
progresses from input to output; (2) the most semantically
rich layers are often near the middle layer of the network.

6

Figure 10. The layer-wise semantics extracted from PGGAN, StyleGAN, and StyleGAN2. Layer indices are shown in the headers.

7

skin nose eye-g eye brow ear mouth u-lip l-lip hair hat ear-r neck cloth
StyleGAN2-FFHQ

LSE 95.9% 94.7% 69.9% 91.0% 83.5% 80.5% 84.5% 87.8% 91.2% 92.9% 11.1% 22.8% 91.0% 72.5%
NSE-1 97.0% 95.4% 72.4% 92.1% 88.2% 83.0% 87.4% 91.6% 92.8% 94.2% 12.9% 34.0% 92.9% 75.9%
NSE-2 96.9% 95.3% 73.4% 92.0% 87.7% 82.8% 87.7% 90.9% 92.9% 94.1% 12.9% 28.6% 92.4% 72.8%

StyleGAN-CelebAHQ
LSE 93.9% 91.3% 25.7% 86.2% 75.9% 63.5% 75.6% 81.1% 85.4% 87.5% 0.0% 13.1% 84.5% 35.9%

NSE-1 95.8% 93.6% 22.8% 89.3% 83.2% 69.4% 78.8% 87.4% 88.7% 90.8% 0.3% 21.3% 88.0% 41.2%
NSE-2 96.0% 94.1% 22.1% 89.4% 84.7% 69.7% 79.0% 88.0% 89.5% 90.9% 0.0% 19.0% 87.8% 39.2%

PGGAN-CelebAHQ
LSE 92.7% 89.4% 19.7% 84.9% 71.7% 61.9% 72.4% 81.4% 84.7% 85.2% 5.0% 16.1% 79.8% 34.1%

NSE-1 93.8% 90.9% 22.0% 86.3% 78.4% 63.0% 71.6% 83.0% 85.6% 86.4% 6.3% 20.3% 81.5% 37.0%
NSE-2 94.1% 92.0% 20.8% 86.2% 78.9% 64.4% 73.0% 83.9% 86.4% 86.9% 6.2% 21.3% 82.2% 37.4%

Table 6. The IoU for each category (excluding background category) of LSE, NSE-1 and NSE-2. The ground-truth used in the IoU
computation is obtained from UNet.

However, it remains unclear how to make use of the layer-
wise semantics and we choose to leave this question for
future research.

J. Supplementary results
Additional qualitative results comparing LSEs and NSEs

are shown in Fig. 11.
Category IoUs for bedroom and church models are sum-

marized in Table 5. They are shown together with category
IoUs from models trained with full ADE20K categories. For
face GANs, the results are shown in Table 6.

More results for Semantic Image Editing are shown in
Fig. 12.

We present supplementary results for Semantic Condi-
tional Sampling on facial images (Fig. 13), bedroom im-
ages(Fig. 14) and church images(Fig. 15).

8

(a) Face datasets. (b) LSUN-bedroom dataset. (c) LSUN-church dataset.
Figure 11. Qualitative comparisions of LSEs and NSEs. For each GAN, 5 samples are shown.

9

origin UNet target SIE(UNet) SIE(8-shot LSE) SIE(LSE)

+ hair

+ hair

- hair

- hair

+ mouth

- mouth

+ eye

- eye

+ ear

+ cloth

- cloth

+ glasses

+ glasses

- glasses

+ hat

✓ ✓ ✓

✗ ✗ ✗

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✗ ✗

✗ ✓ ✓

✓ ✓ ✓

Figure 12. More SIE results on StyleGAN2-FFHQ. Annotations on the left are users’ edit intentions. The following columns are original
images, the face segmentation from UNet, the modified semantic mask by the user, the results from SIE(UNet), SIE(8-shot LSE), and
SIE(LSE), respectively. The green ticks and red crosses represent whether the editing success or not. Other yellow ticks indicate that the
image quality degrades.

10

(a) SCS(1-shot LSE) (b) SCS(4-shot LSE)

(c) SCS(8-shot LSE) (d) SCS(16-shot LSE)

(e) SCS(UNet)
Figure 13. The results of SCS on StyleGAN2-FFHQ using LSEs and UNet.

11

(a) SCS(1-shot LSE) (b) SCS(4-shot LSE)

(c) SCS(8-shot LSE) (d) SCS(16-shot LSE)

(e) SCS(DeepLabV3)
Figure 14. The results of SCS on StyleGAN2-Bedroom using LSEs and DeepLabV3.

12

(a) SCS(1-shot LSE) (b) SCS(4-shot LSE)

(c) SCS(8-shot LSE) (d) SCS(16-shot LSE)

(e) SCS(DeepLabV3)
Figure 15. The results of SCS on StyleGAN2-Church using LSEs and DeepLabV3.

13

